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Abstract: The concept stability measure under the Formal Concept Analysis (FCA) theory is useful
for improving the accuracy of structure identification of social networks. Nevertheless, the stability
calculation is an NP-complete task which is the primary challenges in practical. Most existing studies
have focused on the approximate estimate to calculate the stability. Therefore, we focus on introducing
the Maximal Non-Generator-based Stability Calculation (MNG-SC) algorithm that directly deals with
accurate stability calculation to pave the way for FCA’s application in structures identification of social
networks. Specifically, a novel perspective of stability calculation by linking it to Maximal Non-Generator
(MNG) is first provided. Then, the equivalence between maximal non-generator and lower neighbor
concept is first proved, which greatly improves scalability and reduces computational complexity.
The performed experiments show that the MNG-SC outperforms the pioneering approaches of the
literature. Furthermore, a case study of identifying abnormal users in social networks is presented,
which demonstrates the effectiveness and potential application of our algorithm.
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1. Introduction

With the rapid development of 5G, Internet of Things (IoT) and Artificial Intelligence (AI) in recent
years, the degree of integration between the online social network and the entity has further enhanced.
In this context, it is required to pay close attention to the human element in the information society.
Identifying the cohesive structures, a fundamental task in Social Network Analysis (SNA), facilities to
discover valuable hidden patterns and better understand and predict social networks.

Formal Concept Analysis (FCA) [1], a mathematical tool based on lattice theory, is well applied to the
research of identifying cohesive structures of the social network [2,3]. Generally speaking, when FCA is
used for social network analysis, the topological information of the social network is first used as the input
of FCA. Then by the concept generation algorithm, the network structure is transformed into concept
form which is extracted knowledge by FCA. The detailed process of how to use FCA in social networks
analysis can refer to [2,4]. In practice, the overwhelming size of the extracted knowledge, induced by
formal concepts, limits its extensive use. How to understand concepts which represent structural topology
is a key issue that affects the recognition accuracy. Considerable work [5,6] has proved that the concept
stability measure in the FCA theory community is useful for improving knowledge quality and revealing
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interesting patterns, which provides a theoretical basis for improving the recognition accuracy when FCA
meets SNA. Indeed, concept stability, a bridge measure between FCA and SNA, is not only efficient for
assessing the concept quality around the FCA [6], but also is widely used in numerous applications, e.g.,
community detection [7,8], virtual machines scheduling in mobile edge computing [9], abnormal users
detection in social networks [10]. For example, an illustration of the role of FCA and stability in identifying
illegal users in social networks is presented in Figure 1. As shown in Figure 1a, abnormal users may deliver
the same fake news to a certain online social network, which makes these users form a cohesive and illegal
users group. Indeed, it is hidden common behaviors or characteristics that make these illegal users form
relatively cohesive and isolated groups in social networks. Then, FCA can be used to identify various
subgraph structures in social networks, but it cannot accurately identify the required structure. However,
as shown in Figure 1c, the illegal user group can be accurately identified by using of stability measure.

Figure 1. An illustration of the role of FCA and stability in identifying illegal users in social networks.
(a) a social network including a normal user group and an illegal user group. (b) the network structure
identified by FCA without distinction. (c) an illegal user group accurately identified by stability measure.

Nevertheless, the stability calculation is an NP-complete task [11,12] which is the primary challenges
in practical. To this end, in this paper, we focus on stability calculation to pave the way for the downstream
tasks of the application of FCA in social network analysis. Although it is shown that the calculation
of stability is an NP-complete problem, it is still attracting more and more attention as shown in the
recent works [13–20]. The dedicated literature could be roughly divided into two categories: computing
approximate or exact values of stability. Most previous approaches rely on the whole structure of the
concept lattice to compute approximate or exact values of stability. For example, jay’s algorithm [16] of
stability calculation requires browsing the entire concept lattice and summing over the stability already
computed in lower levels. Obviously, this not only requires a lot of computing resources but also does not
expect scalability when dealing with large concept lattices. A few accurate calculation algorithms, such
as DFSP algorithm [18], start from calculating each concept separately and do not make full use of the
potential knowledge in the concept lattice to speed up the algorithm. In this paper, an algorithm called
MNG-SC that considers the hidden existing knowledge in concept lattice and accurately calculates the exact
value of concept stability is developed, which pave the way for the downstream tasks of the application of
FCA in social network analysis. Specifically, a novel perspective of stability calculation by linking it to
maximal non-generator is first provided. Then the equivalence between maximal non-generator and lower
neighbor concept is proved, which makes it sufficient to calculate the concept stability of a concept by only
exploring its lower neighbor concepts. Furthermore, the performed experiments show that the MNG-SC
outperforms the pioneering approaches of the literature. It demonstrated that MNG-SC algorithm can
directly and effectively deal with accurate stability calculation of formal concepts. In addition, a case study
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of identifying abnormal users in social networks is presented, which demonstrates the effectiveness and
potential application of our algorithm.

In this paper, we focus on solving the theoretical NP-complete problem of stability calculation that
hinders the application of FCA to SNA’s downstream tasks. The main contributions of this paper are
summarized as follows:

• Equivalence Relation between Maximal Non-generator and Lower Neighbor Concept: To best of
our knowledge, it is the first proved that the equivalence between maximal non-generator and lower
neighbor concept. In contrast to the previous algorithm that needs traverse the entire concept lattice to
calculate the stability value, the equivalence makes it possible that only exploring the lower neighbor
of a formal concept is sufficient to compute its stability, which greatly improves scalability and reduces
computational complexity.

• A Novel Algorithm MNG-SC for Calculating the Exact Stability of Formal Concepts: Stability
calculation is an NP-complete problem. Unlike the approximate calculations of most previous
algorithms, we introduce a maximal non-generator-based stability calculation algorithm called
MNG-SC for accurately calculating the stability value of the concept.

• Evaluation: Experimental results show that our algorithm can directly and effectively deal with
accurate stability calculation of formal concepts and it sharply outperforms by many orders of
magnitude the pioneering approach of the literature. In addition, it is worth noting that we further
present a case study to show the usefulness of our research in improving structural security, such as
improving the accuracy of abnormal user identification.

The rest of this paper is organized as follows: Section 2 overviews the related work. The preliminary
knowledge and problem statement are provided in Section 3. Section 4 thoroughly describes the MNG-SC
algorithm for computing the exact stability values of formal concepts. The experimental results and
analysis is presented in Section 5. Finally, Section 6 concludes this paper and discusses future work.

2. Related Work

In this section, the existing work of stability computation is summarized.
The concept lattice theory is hampered by the overwhelming size of the extracted knowledge induced

by formal concepts [19]. In addition, the noise contained in the dataset may generate a large number of
similar but completely distinct concepts, which seriously affects knowledge quality. Stability measure is
more prominent than other interestingness measures for assessing the concept quality and improving the
readability of concept lattices. Computing the stability comes down to explore all the power set of the
extent of the considered concept and check whether it is a generator [18].

To overcome such an NP-complete problem computation task, the dedicated literature could be
roughly divided into two categories: computing approximate or exact values of stability. In the category of
calculating approximate values, Kuznetsov et al. [21] used sufficient conditions to select formal concepts
with low stability values. Later, Babin and Kuznetsov [15] proposed an approximate calculation algorithm
using random Monte Carlo Sampling. Subsequently, Buzmakov et al. [22] provided the lower and upper
bounds of stability values which rely on the existence of the concept lattice. Recently, Ibrahim et al. [17]
explored and proposed a new set of approximation methods for estimating stability, which are variance
reduction techniques that leverage stratification, low-discrepancy and hybridization approaches. In the
category of calculating accurate values, Jay et al. [16] presented that computing the concept stability
requires browsing all its subconcepts. Later, Zhi [20] studied the inclusion-exclusion principle of the
minimal generator to calculate concept stability. It is worth noting that Mouakher et al. [18] pioneered an
algorithm called DFSP that handles straightforwardly concepts stability computation by showing that
most of this search space could be smartly ignored thanks to the saturation of generators.
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Compared with the approximate algorithm, the accurate calculation algorithm can obtain the accurate
value of the stability. Jay’s algorithm considers the existing knowledge in the concept lattice, but because
it needs to traverse all sub-concepts, its scalability is not well. In contrast, although Zhi’s algorithm
does not need to traverse the concept lattice, the process of directly calculating the minimal generator
is very complicated, which is also reflected in the experiment section. Although the DFSP algorithm
optimizes the process of calculating the minimal generator, it can only calculate one concept at a time,
and does not make full use of the potential knowledge in the concept lattice to speed up the algorithm.
On the contrary to the previous algorithm, we propose an algorithm called MNG-SC that fully considers
the existing knowledge in the concept lattice to reduce computational complexity. The novelty of the
MNG-SC algorithm is the proved equivalence between the maximal non-generator and lower neighbor
concept, which makes it possible that only exploring its lower neighbor concept is sufficient to compute
its stability. It means that our algorithm does not have to traverse all concepts such as Jay’s algorithm,
thus ensuring that our algorithm is more scalable. Because the existing knowledge in the concept lattice is
fully considered, there is no need to separately design the method of calculating the minimal generator or
maximal non-generator (such as Zhi and DFSP), which reduces computational complexity and speeds up
the algorithm.

3. Preliminary and Problem Statement

In this section, the key notions used in the remainder of this paper is briefly recalled. In addition, the
problem statement is provided at the end.

3.1. Formal Concept Analysis

Formal concept analysis [1] uses a formal context to construct a hierarchy of concepts, more exactly,
a concept lattice. A formal context is a triple K = (G, M, I), where G indicates a set of objects, M represents
a set of attributes, and I ⊆ G×M is a binary relation.

Each pair (g, m) ∈ I expresses that the object g ∈ G contains the attribute m ∈ M. Given a subset of
objects A ⊆ G and a subset of attributes B ⊆ M, the following derivation operators are defined:

f (A) = {m ∈ M|∀g ∈ A, (g, m) ∈ I}

g(B) = {g ∈ G|∀m ∈ B, (g, m) ∈ I}

where f (A) is the set of attributes common to all objects of A and g(B) is the set of objects sharing all
attributes from B. A formal concept is a pair (A, B), where A ⊆ G,B ⊆ M and f (A) = B, g(B) = A.
A is called the extent and B is called the intent of the concept (A, B). Such concepts are then gathered in
a hierarchical, lattice-based structure, namely concept lattice. In a concept lattice, a partial order exists
between two concepts (A, B) ≤ (C, D) if A ⊆ C(D ⊆ B), a pair (A, B) is a subconcept of (C, D) and (C, D)

is a superconcept of (A, B). If (A, B) ≤ (C, D) and there is no (X, Y) satisfies (A, B) ≤ (X, Y) ≤ (C, D),
(A, B) is a lower neighbor of (C, D) and (C, D) is an upper neighbor of (A, B). Each finite lattice has the
topmost element with A = G, called the top concept, and the lowest element with B = M, called the
bottom concept.

Example 1. Table 1 shows a formal context K with G = {1, 2, 3, 4} and M = {a, b, c, d, e}, in which × denotes
that there exists the binary relation between an object and an attribute. Since the objects 1, 2 and 3 share the common
attributes {a, b} and the attributes a and b have the common objects {1, 2, 3}. Thus, ({1, 2, 3}, {a, b}) is a concept.
{1, 2, 3} is the extent of the concept, {a, b} is the intent of the concept. The corresponding concept lattice is sketched
by Figure 2. Each blue node represents a concept. The upper labels and lower labels of the nodes represent intents
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and extents of the concepts, respectively. The subconcepts of ({3, 4}, {c}) are ({4}, {c, d, e}), ({3}, {a, b, c}) and
({∅}, {a, b, c, d, e}). The lower neighbor concepts of ({3, 4}, {c}) are ({4}, {c, d, e}) and ({3}, {a, b, c}).

Table 1. Example Formal context K.

K a b c d e

1 × × ×
2 × × ×
3 × × ×
4 × × ×

Figure 2. The Concept Lattice of K.

3.2. Concept Stability

Concept lattice straightforwardly illustrates various relationships between concepts and their
subconcepts and superconcepts, which is beneficial for knowledge discovery. However, in practice,
the effective use of the concept lattice is limited by the large volume of extracted concepts and noise
contained in the dataset. Noise contained in the dataset favors the existence of many similar but distinct
concepts, which may excessively impair concept readability. Stability is an effective measure used to select
the most useful and interesting concepts. The definition of stability is as follows:

Definition 1 ([5] Concept Stability). Let K = (G, M, I) be a formal context. Given a formal concept (A, B) of
K, the intentional stability (stability for short) σ of (A, B) is defined as follows:

σ (A, B) =
|{C ⊆ A | f (C) = B}|

2|A|
(1)

The stability describes the proportion of subsets of extent whose closure is equal to the intent [5].
It also can be computed by locating and counting the associated generator of A. Calculating the stability
of the formal concept will explore all elements of the power sets of the extent to check whether it is a
generator. The definition of generator is as follows:

Definition 2 (Generator). Given a formal context K = (G, M, I) and a concept (A, B) of K. If there is a subset P
of A satisfy f (P) = B, then P is a generator of (A, B).
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Corollary 1. Given a formal concept (A, B), the stability of (A, B) is the proportion of generator in the power set of
A. Therefore, Equation (1) of the stability is simplified as follow:

σ (A, B) =
|Gen|
2|A|

(2)

where |Gen| is the total number of generators of (A, B).

Proof. It can be derived naturally from Definition 1 and Definition 2.

Example 2. Continue the Example 1, let us consider the formal concept ({1, 2, 3}, {a, b}). The number of the
subsets of {1, 2, 3} is 8 and only three subsets {1, 3}, {2, 3}, {1, 2, 3} satisfy the Definition 2. Therefore, the number
of generators |Gen| is equal to 3 and the stability of ({1, 2, 3}, {a, b}) is equal to 3/8.

3.3. Problem Statement

Computing the intensional stability of a formal concept comes down to explore all the power set of
the extent and check whether it is a generator. Formally, given a formal concept C = (A, B), such that
A = {a1, a2, · · · , ai}, computing the intensional stability of this formal concept comes down to explore its
power set, i.e., P(A). For each non-empty set, from of 2|A| − 1, check whether its support is equal to the
cardinality of its associated intent, (c.f. Equations (1) and (2)).

In the next section, we will introduce the MNG-SC algorithm to deal with the exact stability calculation
of formal concepts. Specifically, we first provide a new perspective of stability computation by linking it
to maximal non-generator. Then we prove the equivalence between maximal non-generator and lower
neighbor concept, which makes it possible that only exploring the lower neighbor of a formal concept is
sufficient to compute its stability.

4. Concept Stability Calculation Based on Maximal Non-Generator

In this section, the MNG-SC algorithm that can accurately calculate the concept stability is introduced
in detail. Unlike traditional algorithms that use minimal generators to calculate stability values,
we provide a novel perspective of stability calculation by linking it to maximal non-generator. Then
thanks to the proved equivalence between the maximal non-generator and the lower neighbor concept,
the maximal non-generator is directly obtained form the existing concept lattice. At last, a novel Maximal
Non-Generator-based Stability Calculation (MNG-SC) algorithm is proposed.

4.1. Linking Stability Calculation to Maximal Non-Generator

In this part, we first provide a formula (Corollary 2) for calculating stability value leveraging the
non-generators. Then, we make use of the special properties (Property 1) of maximal non-generators to
obtain a novel perspective (Theorem 1) for calculating the stability of a concept.

Corollary 2. Given a formal concept (A, B), the stability of (A, B) is the proportion of generator in the power set
of A. On the contrary, it also can be computed by the proportion of the total number of non-generator |NonGen|.
Therefore, Equation (1) of the stability is simplified as follow:

σ (A, B) = 1− |NonGen|
2|A|

(3)

where |NonGen| is the total number of non-generator of (A, B) .
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Proof. According to Corollary 1, |Gen| is the total number of (A, B). Then we have the following equality:

|NonGen|+ |Gen| = 2|A|. Naturally, σ (A, B) = |Gen|
2|A|

= 2|A|−|NonGen|
2|A|

= 1− |NonGen|
2|A|

.

Definition 3 (Maximal Non-generator). Given a formal context K = (G, M, I) and a concept (A, B) of K.
If there is a subset P of A which makes f (P) 6= B, then P will be a maximal non-generator if there no exists P1 ⊆ G
and P ⊂ P1 such that f (P1) 6= B.

Property 1 (Property of Definition 3 [18]). Let (A, B) be a formal concept. If P is a maximal non-generator of
the extent A, then P fulfills that ∀P1 ⊆ P, P1 is also a non-generator of A.

Proof. It could be found in [18].

Based on the special Property 1 of maximal non-generator, we have known all subsets of maximal
non-generator are non-generators. On this basic, we can naturally calculate the number of subsets of
maximal non-generators to obtain the |NonGen| in Equation (3). Therefore, a new theorem for calculating
the stability of a concept is proposed. The theorem is as follows:

Theorem 1. Given a formal context K = (G, M, I) and a concept (A, B) of K. If all maximal non-generators of
(A, B) are {P1, P2, P3 . . . Pn}, then

σ (A, B) = 1−
(

n

∑
i=1

2|Pi | − ∑
1≤i<j≤n

2|Pi∩Pj| + · · ·+ (−1)n−1 2|P1
⋂

P2∩···∩Pn |
) (

2|A|
)−1

(4)

Proof. Since {P1, P2, P3 . . . Pn} are the maximal non-generators of (A, B), based on Property 1, all subsets
of Pi are non-generators. Thus, the total number of non-generator is |NonGen| = |⋃n

i=1{S|S ⊆ Pi}|. Based
on Corollary 2 and the Inclusion-Exclusion principle, the total number of non-generators could got via
|⋃n

i=1{S}| = ∑n
i=1 2|Pi | −∑1≤i<j≤n 2|Pi∩Pj | + · · ·+ (−1)n−1 2|P1

⋂
P2∩···∩Pn |. Naturally, Equation (4) can be

directly derived.

Example 3. Continue the Example 2, we have known the generators of ({1, 2, 3}, {a, b}) are {1, 3}, {2, 3}, {1, 2, 3}
and its stability is equal to 3/8. Obviously, all the subsets of {1, 2, 3} except these three generator are
non-generators. Thus, the non-generator of ({1, 2, 3}, {a, b}) are {1, 2}, {1}, {2}, {3}, ∅. According to the
Definition 3, the maximal non-generators are {1, 2}, {3}.

Suppose we first have know the maximal non-generators {1, 2}, {3}, according the Property 1, the number of
subsets of {1, 2} and {3} is equal to the number of non-generators of the concept. According the Theorem 1, we can
get the number of non-generator is 5 and the stability of ({1, 2, 3}, {a, b}) is equal to 1− 5

8 = 3
8 .

4.2. Extracting Maximal Non-Generator

Summarize the preceding part of this section, we have known that the stability of (A, B) can be
calculated by linking it to maximal non-generator. Now, how to obtain all maximal non-generators of
(A, B) is becoming important. The brute force method of traversing all subsets of A and checking whether
Definition 3 is satisfied undoubtedly wastes computing resources.

Interestingly, we have found the equivalence between maximal non-generator of A and the lower
neighbor concept of (A, B) . This equivalence makes it sufficient to calculate the concept stability by only
exploring its lower neighbor concepts, which greatly improves scalability and reduces computational
complexity. The equivalence theorem is given below:
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Theorem 2. Given a formal context K = (G, M, I) and a concept (A, B) of K. The maximal non-generators of A
is equivalent to the lower neighbor concepts of (A, B).

Proof. In order to prove the equivalence of lower neighbor concept and maximal non-generator, we need
to prove from two directions: (1) Suppose X is a maximal non-generator of A, then it can form a lower
neighbor concept (X, f (X)) of (A, B). (2) If (X, Y) is a lower neighbor concept of (A, B), then X is a
maximal non-generator of A .

(1) Since X is a maximal non-generator of A, then X ⊂ A ⇔ f (A) ⊂ f (X) ⇔ g( f (X)) ⊂ A.
In addition, X ⊆ g( f (X)), thus we can get X ⊆ g( f (X)) ⊂ A. However, X is a subset of g( f (X)) could
never hold, otherwise X could not be maximal. Thus, X = g( f (X)), it means that there exists a lower
neighbor concept (X, f(X)) of (A, B).

(2) Since (X, Y) is a lower neighbor concept of (A, B), then B ⊂ Y, X ⊂ A, f (X) = Y. So X is
a non-generator of A. Suppose X is not maximal, there exists a maximal non-generator ~X ⊃ X of
A. From (1), there should exist a concept (~X, f (~X)). This conclusion contradicts the initial conditions.
Thus, X is a maximal non-generator of A.

Based on the proved the equivalence of lower neighbor concept and maximal non-generator, we can
directly obtain the maximal non-generator form the existing concept lattice. For example, as shown in
Figure 3, calculating the maximal non-generators of {(1, 2, 3), (a, b)} only needs to directly explore its
lower neighbor concepts {(1, 2), (a, b, e)} and {(3), (a, b, c)}.

Figure 3. Explored lower neighbor concepts for computing the stability of {(1, 2, 3), (a, b)}.

Next, on the basis of Theorem 1, the core theorem is proposed as follows. It uses the inclusion-exclusion
principle and the lower neighbor concept of (A, B) that represents maximal non-generator of A to calculate
concept stability. The core theorem is as follows:

Theorem 3. Let K = (G, M, I) be a formal context and a formal concept (A, B) of K. If all neighbor concepts of
(A, B) are {(A1, B1), (A2, B2) . . . (An, Bn)}, then

σ (A, B) = 1−
(

n

∑
i=1

2|Ai | − ∑
1≤i<j≤n

2|Ai∩Aj| + · · ·+ (−1)n−1 2|A1
⋂

A2∩···∩An |
) (

2|A|
)−1

(5)
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Proof. According to the Theorem 2, all lower neighbor concepts of (A, B) are its maximal non-generators.
Then, Equation (5) can be naturally derived from Theorem 1.

Corollary 3. Let K = (G, M, I) be a formal context and a formal concept (A, B) of K. If the lower neighbor concept
of (A, B) is the bottom concept, the stability of (A, B) is equal to 2|A|−1

2|A|
.

Proof. The extent of the bottom concept is an empty set. So the maximal non-generator is an empty set
means only one empty set in the powerset of A is a non-generator. Thus, the stability of (A, B) is equal
to 2|A|−1

2|A|
.

Example 4. Continue the Example 3, according Theorem 1, we have known how to compute the stability of
{(1, 2, 3), (a, b)} by using the maximal non-generators. Next, we give a demonstration of how to directly obtain the
maximal non-generators according to Theorem 2 and how to calculate the stability by using the obtained maximal
non-generators according Theorem 3.

According to Theorem 2, the lower neighbor concepts {(1, 2), (a, b, e)}, {(3), (a, b, c)} are maximal
non-generators of {(1, 2, 3), (a, b)}. As shown in Figure 3, calculating the maximal non-generators of
{(1, 2, 3), (a, b)} only needs to directly explore its lower neighbor concepts {(1, 2), (a, b, e)} and {(3), (a, b, c)}.
Then, according to Theorem 3, the number of distinct subsets of {1, 2}, {3} which equals to the number of
non-generators of {(1, 2, 3), (a, b)} is 5. Thus, the stability value of {(1, 2, 3), (a, b)} is 23−5

23 = 3
8 .

4.3. MNG-SC Algorithm

Based on the previous discussion, the MNG-SC algorithm for the accurate computation of concept
stability is proposed. The guiding idea is the fact that the maximal non-generators of a given formal
concept is equivalent to its lower neighbor concepts.

The pseudo-code of the MNG-SC algorithm is described by Algorithm 1. The algorithm takes a
formal concept (A, B) as input and starts by initializing the stability value σ to 0, the total number of
non-generator Nb to 0, the f lag of the empty maximal non-generator intersection to false (c.f. Line 1).
In Lines 3–4, the maximal non-generator objects are assigned to the lower neighbor concepts of (A, B)
(c.f. Theorem 2). The goal of the for loop (c.f. Lines 5–13) is to compute the total number of non-generator.
To do so, if the f lag is false, the getINongenNum function will be invoked. The goal of the function is to
calculate the number of non-generator obtained by i maximal non-generator objects. The flag is ture means
that the intersection of i or more maximal non-generator is empty. Therefore, Nb is accumulated according
to Equation (3). In Lines 14–15, the stability σ of the concept is calculated (c.f. Equation (3)) and returned.

As shown in Algorithm 2, the getINongenNum function inputs the maximal non-generator objects,
the number of maximal non-generator objects to be intersected and outputs the number of non-generator
obtained by i maximal non-generators. It starts by initializing INb to 0 (c.f. Line 2). In the for loop on the i
elements of the objects M (c.f. Line 3), the intersection of any i maximal non-generator objects is calculated
and the number of non-generators is accumulated and assigned to INb. In Lines 7–9, if the INb is equal
to 0, the f lag represented the empty set of IM is assigned to true. At last, the number of non-generator
obtained by i maximal non-generators INb is returned.
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Algorithm 1: Maximal Non-generator-based Stability Calculation Algorithm.

Input: A formal concept C = (A, B)
Output: Stability σ of concept C

1 Initialize σ =0, Nb = 0, f lag = false
2 begin
3 MaxNonGen = C.lowerNeighbors
4 N = |MaxNonGen|
5 for (i = 1; i ≤ N; i++) do
6 if f lag == false then
7 Nb = Nb + getINongenNum(MaxNonGen, i)
8 else if f lag == true && i%2 == 0 then
9 Nb = Nb + (N

i )

10 else if flag == true && i%2 != 0 then
11 Nb = Nb - (N

i )

12 end if
13 end for
14 σ = 1− Nb/2|A|

15 return σ

16 end

Algorithm 2: getINongenNum Function.
Input: M: The maximal non-generator objects of A

i: The number of maximal non-generator objects to be intersected
Output: INb : The number of non-generator obtained by i maximal non-generators

1 begin
2 INb = 0
3 for M1, M2, · · ·Mi ∈ M do
4 IM = M1 ∩M2 ∩ · · · ∩Mi
5 INb = INb + |IM|
6 end for
7 if INb == 0 then
8 f lag = true
9 end if

10 return INb
11 end

5. Experiments

The main goal of our experiment evaluation is to investigate the following key questions:

• (Q1): Is MNS-SC more efficient than the state-of-the-art stability calculation algorithms?
• (Q2): Is MNG-SC useful when FCA applied to SNA’s downstream tasks, such as abnormal

users identification?

In order to solve Q1, we examine the performance of MNG-SC algorithm with compared to the other
three state-of-the-art stability calculation algorithms. In order to answer Q2, a case study in Section 5.3
is presented to illustrate the usefulness of MNG-SC algorithm and potential application scenarios of our
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research. All experiments are conducted on a Core i7 PC machine with 1.80 GHz 1.99 GHz CPU and 16 GB
RAM running Windows 10 system.

5.1. Experimental Setup

5.1.1. Datasets

Four available public datasets commonly used in the network analysis realm were used in these
experiments. The critical characteristics of these datasets are summarized in Table 2 including the number
of vertices, the number of edges and the generated concept number ]concepts of each dataset. The number
of generated concepts by datasets is in different orders of magnitude.

Table 2. Statistics of Datasets.

DataSet Vertices Edges ]Concepts

Karate 34 78 134
Terrorist 64 243 165
Football 115 613 3271
Neural 297 2148 17,442

The statics description of the datasets is as follows: Karate (http://www-personal.umich.edu/) [23]
is a typical social network among the 34 members of the Karate club of a university in the USA. Terrorists
(http://konect.uni-koblenz.de/) [24] is an undirected network including contacts between suspected
terrorists involved in the train bombing of Madrid on 11 March 2004 as reconstructed from newspapers.
Football (http://www-personal.umich.edu/) [25] is a network of American football games between
Division IA colleges during regular season Fall 2000. Neural Network (http://www-personal.umich.edu/)
[26] is a network representing the neural network of C.Elegans.

A network is represented as a graph G = (V, E) where the vertex set V represents individuals and the
edge set E denotes the relationship between individuals. Here, a network can be formalized as the formal
context K = (V, V, I) by the following modified adjacency matrix, in which I is the binary relationship
between vertices.

Definition 4 ([2] Modified Adjacency Matrix). Let G = (V, E) be a graph with vertices v1 to vn. The n× n
matrix M

′
is called a modified adjacency matrix, in which

M
′
=


aij = 1 if (vi, vj) ∈ E

aij = 1 if i = j

aij = 0 otherwise

(6)

5.1.2. Comparison Approaches

Three state-of-the-art stability calculation algorithms were selected as comparisons. All algorithms
are all implemented in Java. For each algorithm, we run 20 times and report the average value.
The descriptions are as follows.

• Jay [16]: it is a stability calculation algorithm that requires browsing the entire concept lattice and
summing over the stability already computed in lower levels.

• DFSP [18]: it is the first algorithm that does not rely on the structure of concept lattice and handles
exact stability computation of formal concepts.

http://www-personal.umich.edu/
http://konect.uni-koblenz.de/
http://www-personal.umich.edu/
http://www-personal.umich.edu/
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• Zhi [20]: it is an algorithm based on the inclusion-exclusion principle of the minimal generator to
calculate concept stability.

5.2. Experimental Results

Figure 4 reports the number of generated concepts ]concepts and the running time of Jay, DFSP
and MNG-SC algorithm on the tested datasets. As we can see, the performance of both DFSP and our
MNG-SC algorithm will degrade with the increase in the number of concepts. At a glance, our algorithm
significantly outperforms than its competitors on all considered datasets.

134
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17,442
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Jay
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Figure 4. The number of generated concepts and the running time of Jay, DFSP and MNG-SC on the
experimental datasets.

Table 3 provides detailed information about a comparison between the MNG-SC algorithm and
other algorithms for computing stability in terms of running time. In the second column of the table,
the MNG-SC algorithm sharply outperforms Zhi’s algorithm by many orders of magnitude. It is mainly
related to the time-consuming process of extracting minimal generators of Zhi’s algorithm. In contrast,
MNG-SC can directly obtain maximal non-generator through the proven equivalence between maximal
non-generator and lower neighbor concept (c.f. Theorem 2). Besides, “–” means that the Zhi’s algorithm
end with memory overflow on the remaining Football and Neural datasets. It is because the extracting
minimal generator method of Zhi’s algorithm is sensitive to the number of minimal non-generators.
Compared with the third and fourth column, the MNG-SC algorithm also significantly outperforms than
Jay’s algorithm and DFSP algorithm. Indeed, because Jay’s algorithm needs to explore the entire concept
lattice to calculate the concept stability value, MNG-SC only explores the lower neighbors of the formal
concept to calculate the stability. Besides, our algorithm does not need to design a separate method of
calculating minimal generators such as DFSP, which reduces the computational complexity. DFSP does
not rely on existing knowledge in concept lattice to calculate stability value, which may cause a waste of
computing resources, even in the case of small data.

However, it is because our algorithm relies on the lower neighbor concepts of the concept (A, B) to
speed up the stability calculation. The more number of the concept’s lower neighbor concept, the more
obvious the limitation of our algorithm. Noted that an interesting situation in the experiment that
time-consuming concepts have a common feature that the number of their lower neighbor concepts is
more than 25. For example, when our algorithm runs on Football dataset, a concept that has 25 lower
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neighbors accounts for about 69% of the computation time of all concepts. In addition, another concept
that has 24 lower neighbors accounts for 12% of the total time, while the remaining 3269 concepts only
account for 19%. However, the number of such time-consuming concepts accounts for a small proportion
of the total, and it is easy to limit it by adding judgment conditions.

Table 3. The running time comparison of stability calculation algorithms on different datasets.

DataSet Zhi(s) Jay(s) DFSP(s) MNG-SC(s)

Karate 124.106 71.483 0.385 0.017
Terrorist 136.500 80.240 0.520 0.026
Football – 129.135 15.940 13.402
Neural – 375.970 157.420 135.090

5.3. Abnormal Users Identification of a Social Network: A Case Study

In this section, a case study of identifying abnormal users in social networks is presented to clarify
the usefulness and practical application of our algorithm. Noted that our research focuses on providing a
powerful stability calculation algorithm for FCA applied to SNA’s downstream tasks.

Aforementioned as Figure 1a, it is some hidden common behaviors or characteristics, such as
delivering the same fake news to a certain online social network, that make these illegal users form
relatively cohesive and isolated groups in social networks. In this context, abnormal user recognition can
be modeled as an isolated maximal clique enumeration problem [10]. In [7], ibrahim et al. adopted concept
stability to developed a community detection algorithm called COIN which based on removing isolated
maximal cliques. COIN can be divided into three steps to identify the community based on stability value.
Step 1 extracts the concepts that represent cliques and bridges. Step 2 is in charge of using approximated
stability values to cut noisy bridges and detect isolated maximal cliques which represent abnormal users
groups. The remaining cliques which represent the normal cohesive group are percolated in Step 3. Here,
we only use Steps 1,2 of COIN to identify abnormal users called COIN12, and develop an optimized
algorithm called COIN∗12. The only difference between COIN12 and COIN∗12 is the stability calculation
algorithm. COIN12 use the approximate calculation algorithm LDS [27] to calculate the stability value,
while COIN∗12 uses our MNG-SC algorithm. F1-measure is used to evaluate the accuracy of detection.
The higher the F1 scores, the higher the accuracy.

Table 4 shows the detailed information about a comparison between COIN12 and COIN∗12 in terms of
running time and F1 score. Obviously, it can be seen that by adopting the stability calculation algorithm
proposed in this paper, namely MNG-SC, COIN∗12 needs less running time than COIN12, but the F1 score
of abnormal users detection is higher. For example, on Terrorist (Figure 5), the running time ratio between
COIN12 and COIN∗12 is about 6

4 and F1 scores ratio is about 4
6 . This is because MNG-SC fully considers the

existing knowledge in the concept lattice, reduces the computational complexity and shortens the running
time. In addition, the algorithm can accurately calculate the stability value, so the recognition accuracy is
higher. In summary, this case study not only shows that MNG-SC algorithm can complete the stability
calculation task of FCA efficiently and accurate, and also shows that MNG-SC can provide better support
for the downstream tasks of SNA, such as abnormal users identification.
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Table 4. The running time and F1-score of COIN12 and
COIN∗12 on the experimental datasets.

Datasets Running Time(s) F1-Measure

COIN12 COIN∗
12 COIN12 COIN∗

12

Karate 2.687 1.635 0.610 0.886
Terrorist 2.920 1.792 0.591 0.850
Football 58.7321 33.722 0.651 0.835
Neural 385.818 189.813 0.622 0.804

62%

41%

38%

59%

Time

F1

0 20 40 60 80 100

 COIN12
*

 COIN12

Figure 5. The running time ratio and F1 ratio on Terrorist between COIN12 and COIN∗12.

6. Conclusions

FCA has been widely used in the identification of social network structures, and stability measures can
further improve the accuracy of structure identification. However, stability calculation is an NP-complete
task which is the primary challenges in practical. In this paper, we focused on stability calculation and
proposed an efficient algorithm MNG-SC to pave the way for the downstream tasks of the application of
FCA in social network analysis, such as enhancing the structural security of social networks. Specifically,
a novel perspective of stability calculation by linking it to maximal non-generator is first presented.
Then, the equivalence between maximal non-generator and the lower neighbor concept is first proved,
which makes it sufficient to calculate the concept stability by only exploring its lower neighbor concepts.
Experiments demonstrated that the proposed algorithm significantly outperforms several comparative
approaches for addressing the concept stability calculation problem and provides better theoretical support
for the downstream tasks of SNA, such as abnormal users identification.

Future work for further exploration is as follows: (1) explore the relationship between the minimal
generator and maximal non-generator to find the inner connection of stability calculation algorithms.
Then consider the special properties of social networks, such as homogeneity, to develop an efficient
stability calculation algorithm specifically suitable for social networks. (2) learn the accurate relationship
between topological structure and stability value to improve the accuracy of structure recognition.
Generally speaking, the more cohesive structure has a higher stable value. (3) conduct more practical
applications of stability measure, such as community detection, social network security, etc.
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