
Maximal Multipolarized Cliques Search in Signed Networks
Jie Gao

Shaanxi Normal University

jaygao@snnu.edu.cn

Fei Hao
∗

Shaanxi Normal University

& University of Exeter

feehao@gmail.com

Geyong Min

University of Exeter

g.min@exeter.ac.uk

Zhipeng Cai

Georgia State University

zcai@gsu.edu

ABSTRACT
The increasing of group polarization on social media seriously im-

pacts on the health of public discourse and information dissemina-

tion. At present, detecting polarized structures in signed networks

is well-motivated for studying the group polarization on social

media. However, most studies restricted the number of polarized

structures to only two, while neglecting the real-world scenario

where signed networks consist of multiple polarized structures,

that is an unreasonable assumption. To conquer the limitations of

the existing work, in this paper, we present a novel cohesive sub-

graph model based on structural clusterable theory, namedmaximal

multipolarized clique (MMC), which can be partitioned into 𝑘 po-

larized subcliques such that the edges in subcliques are positive and

the edges between subcliques are negative. This paper formulates

the problem of Maximal Multipolarized Cliques Search (MMCS) in

signed networks which is proved to be NP-hard. To address this

problem, we first devise powerful pruning rules to reduce the signed

network significantly and further develop an efficient algorithm

to search all maximal multipolarized cliques in the reduced signed

network. The experimental results on real-world signed networks

demonstrate the efficiency and effectiveness of our algorithm.
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1 INTRODUCTION
Nowadays, group polarization around controversial social media

issues has become prevalent and is increasingly recognized as a
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deeply concerning problem. There is no doubt that social media

algorithms accurately recommend and continuously display filtered

information to meet user preferences, thereby helping the platform

attract a multitude of users. However, users prefer to see opinions

or logic similar to theirs on social media, while ignoring any infor-

mation that may contradict their preexisting ideas. This quickly

causes polarization and then leads to the formation of multiple

polarized “echo chambers". Excessive polarized “echo chambers"

help users strengthen their beliefs while alienating those who hold

different views, which provides a negative user experience and

seriously impacts the health of public discourse and information

circulation. Therefore, mining polarized structures in social net-

works is well-motivated for paving the way to further study group

polarization [9].

Nevertheless, how to represent the attitude or sentiment of in-

teractions between individuals? It should be acknowledged that a

signed network can powerfully encode many real-world relations

between two entities with positive and negative links, such as pros-

cons opinions in opinion networks and friend-fore relationships

between users in social networks [5]. A great deal of recent re-

search has focused on discovering polarized communities in signed

networks [1, 6, 9]. For example, the study [1] has formulated and re-

searched the problem of discovering two polarized communities in

signed networks based on graph spectral methods. However, these

methods aim to find two communities in a global signed network.

In the literature, considerable approaches [3, 5, 7, 8] have been

proposed for cohesive subgraph detection in signed networks. For

example, the balanced clique model of signed networks is proposed

in [3]. A balance clique is defined as a maximal clique that can be

partitioned into two subcliques in which the edges in subclique are

positive and the edges between subcliques are negative.
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(a)  3-clustering graph G (b)  balanced graph G

Figure 1: An example of 𝑘-clustering graph and balanced
graph. Solid edges are positive, dashed edges are negative.

However, in the existing works[1, 3, 9], restricting the number

of polarized structures to only two is an unreasonable assumption

to make while representing multiple polarized structures in real-

world signed networks, which is actually influenced by structural
balance theory [2] in signed network analysis. In fact, [4] has al-

ready extended structural balance theory and proposed the other
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fundamental theory, named structural clusterable theory, including
a new concept of 𝑘-clustering graph to relax the strict constraint.

Specifically, compared with a balanced graph divided into two mu-

tually exclusive subgraphs, a 𝑘-clustering graph can be partitioned

into 𝑘 opposing clustering such that the edges in the same clus-

tering are positive and the edges between clustering are negative.

For example, Figure 1(a) presents a 3-clustering graph which can

be split into three clustering, i.e., {1, 2}, {3, 4} and {5, 6, 7}. If we
restrict 𝑘 to 2, we can obtain a balanced graph {1, 2, 5, 6, 7} con-
sisting only two polarized clustering {1, 2} and {5, 6, 7} in Figure

1(b). Obviously, the 𝑘-clustering graph model is more flexible than

balanced graph in signed networks.

Drawing inspiration from the above-mentioned work, we pro-

pose the maximal multipolarized clique for signed networks in this

paper that considers the structural clusterable theory and study

the MMCS problem which searches all the maximal multipolarized

cliques in a given signed network. An MMC satisfies three prop-

erties: (i) it is a clique in which every pair of nodes have an edge.

(ii) it can be partitioned into 𝑘 subcliques, and every subclique’s

size is no less than 𝑎. (iii) it is maximal, i.e., none of its supergraphs

meets the conditions (i) and (ii). The MMC model sets the arbitrary

number of polarized groups that conforms to structural clusterable

of real-world signed networks, and also compacts the clique prop-

erty which considers the homogeneity of social networks. From

an application perspective, compared with the existing models, the

proposed MMC model with an arbitrary number of polarized struc-

tures is more suitable for real-world signed networks. It can also be

used in many applications, such as opinion leader detection, trust

community mining, protein complex discovery, etc [5].

To the best of our knowledge, this is the first work to propose

the MMC model considering structural clusterable theory and fur-

ther study the MMCS problem in signed networks. We also prove

that the MMCS problem in signed networks is NP-hard. To solve

this problem, we first devise powerful signed network reduction

techniques to significantly prune the large-scale signed networks.

An efficient enumeration algorithm is then developed with tailored

pruning rules to enumerate all MMCs in signed network. Finally, we

conduct extensive experiments on real-world signed networks to

demonstrate the efficiency and effectiveness of this new algorithm.

2 PROBLEM STATEMENT
Let 𝐺 = (𝑉 , 𝐸+, 𝐸−) be an undirected signed graph, where 𝑉 is the

set of nodes, 𝐸+ and 𝐸− are the sets of positive and negative edges in
𝐺 , respectively. 𝑛 = |𝑉 | and𝑚 = |𝐸+ | + |𝐸− | are the number of nodes

and edges. For each edge 𝑒 ∈ 𝐸, it is associated with a label either

“+" or “-". For each node 𝑢 ∈ 𝑉 , let 𝑁𝑢 = {𝑣 | (𝑢, 𝑣) ∈ 𝐸,𝑢, 𝑣 ∈ 𝑉 } be
the set of neighbor nodes of 𝑢, 𝑁 +𝑢 = {𝑣 | (𝑢, 𝑣) ∈ 𝐸+, 𝑢, 𝑣 ∈ 𝑉 } be
the set of positive neighbors, and 𝑁−𝑢 = {𝑣 | (𝑢, 𝑣) ∈ 𝐸−, 𝑢, 𝑣 ∈ 𝑉 } be
the set of negative neighbors. Let 𝑑𝑢 = |𝑁𝑢 |, 𝑑+𝑢 = |𝑁 +𝑢 |, 𝑑−𝑢 = |𝑁−𝑢 |
be the degree, the positive degree, and the negative degree of 𝑢,

respectively.

Definition 2.1. (MaximalMultipolarized Clique) Given a sign
ed network 𝐺 = {𝑉 , 𝐸+, 𝐸−} and two integers 𝑘 and 𝛼 , an MMC 𝐶

is a maximal subgraph of 𝐺 that satisfies the following constraints:

• Clique Constraint: 𝐶 is complete, i.e, ∀𝑢, 𝑣 ∈ 𝐶 ⇒ (𝑢, 𝑣) ∈
𝐸+ ∪ 𝐸−.

• Polarized Constraint: 𝐶 can be partitioned into 𝑘 polarized

subcliques 𝑃1, 𝑃2 ...𝑃𝑘 , s.t. ∀𝑒 ∈ {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑃𝑖 , 𝑖 ∈ [1, 𝑘]} ⇔ 𝑒 ∈
𝐸+, and ∀𝑒 ∈ {(𝑢, 𝑣) |𝑢 ∈ 𝑃𝑖 , 𝑣 ∈ 𝑃 𝑗 , 𝑖, 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑗} ⇔ 𝑒 ∈ 𝐸−.
The size of each polarized subclique is no less than 𝛼 , s.t. |𝑃𝑖 | ≥ 𝛼 .

•Maximal Constraint: there is no multipolarized clique 𝐶 ′ in
𝐺 containing 𝐶 .

Intuitively, the clique constraint ensures the subgraph is densely

connected. The polarized constraint guarantees the subgraph meets

structural clusterable theory and considers the practical application

requires a fixed threshold of size.

Example 2.2. Considering the 3-clusterable graph 𝐺 in Figure

1(a), assume 𝑘 = 3 and 𝛼 = 2, there are two MMCs in 𝐺 , i.e.,

𝐶1 = {{1, 2}, {3, 4}, {5, 6}} and 𝐶2 = {{1, 2}, {3, 4}, {6, 7}}. Taking
𝐶1 as an example, it is a clique since any two nodes in 𝐶1 have an

edge. 𝐶1 can be be split into three polarized subcliques, i.e., {1, 2},
{3, 4} and {5, 6}, and the size of each subclique is no less than 2.

It is maximal because if node 7 is added into it, neither the clique

constraint nor polarized constraint will not be satisfied.

Problem Statement. Given a signed network𝐺 = (𝑉 , 𝐸+, 𝐸−) and
two positive integers 𝑘 and 𝛼 , the goal of MMCS problem is to

enumerate all MMCs in 𝐺 .

ProblemHardness. The MMCS problem is NP-hard. Suppose that

𝑘 = 1, an MMC is degraded to a traditional maximal clique. This is

because three constraints in Definition 2.1 always hold when 𝑘 = 1.

Therefore, searching all MMCs in 𝐺 is equivalent to enumerating

all traditional maximal cliques if 𝑘 = 1. Thus, the classic maximal

clique enumeration problem is a special case of our MMCS problem.

Since the traditional maximal clique search problem is NP-hard,

MMCS is also NP-hard.

3 APPROACH
To address MMCS problem, several powerful pruning techniques

for social networks and an efficient identification algorithm are

elaborated below.

3.1 Signed Graph Reduction
In this section, we propose several effective rules to prune the

unpromising nodes that are definitely not contained in any MMC.

In [3], the (𝑙, 𝑟 )-signed core is defined as the maximal subgraph

of 𝐺 such that every node in this subgraph has a positive degree

no less than 𝑙 and a negative degree no less than 𝑟 , s.t. ∀𝑢 ∈ 𝐺 →
𝑑+𝑢 ≥ 𝑙 ∧𝑑−𝑢 ≥ 𝑟 . Next, we show that all MMCs are contained in the

specific (𝑙, 𝑟 )-signed core of 𝐺 .

Lemma 3.1. Given a signed network 𝐺 and two integers 𝑘 and 𝛼 ,
any MMC 𝐶 = {𝑃1, 𝑃2 ...𝑃𝑘 } is contained in a connected component
of the (𝛼 − 1, (𝑘 − 1)𝛼)-signed core.

Proof. Based on Definition 2.1, the edges in subcliques 𝑃𝑖 are

positive and the edges between subcliques 𝑃𝑖 and 𝑃 𝑗 are negative,

and |𝑃𝑖 | ≥ 𝛼 . Clearly, for each node 𝑢 ∈ 𝐶 , it should have the least

𝛼 − 1 positive neighbors in same subclique and the least (𝑘 − 1)𝛼
negative neighbors in different subcliques, s.t. ∀𝑢 ∈ 𝐶 → 𝑑+𝑢 ≥
𝛼 − 1∧𝑑−𝑢 ≥ (𝑘 − 1)𝛼 . Thus,𝐶 forms a (𝛼 − 1, (𝑘 − 1)𝛼)-signed core.
Since any MMC is connected, it must be contained in a connected

component of the (𝛼 − 1, (𝑘 − 1)𝛼)-signed core. □
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According to structure clusterable theory [4], a triangle is un-

clusterable if it contains two positive edges and one negative edge

(Figure 2(b)), otherwise, the triangle is clusterable (Figure 2(a)). If

all triangles in a graph are clusterable, then the graph is clusterable.

Given a node 𝑣 , we use △+++𝑣 , △+−−𝑣 and △−−−𝑣 to denote clusterable

triangles that contain 𝑣 . And the cardinality of above triangles is

denoted by |△+++𝑣 |, |△+−−𝑣 | and |△−−−𝑣 |.

Figure 2: Example of clusterable and unclusterable triangles

Lemma 3.2. Given a signed network𝐺 = (𝑉 , 𝐸+, 𝐸−), for an MMC
𝐶 = {𝑃1, 𝑃2 ...𝑃𝑘 } in 𝐺 , 𝐶 is contained in a maximal subgraph 𝐺 ′ of
G that satisfies the following constraints:

∀𝑣 ∈ 𝑉𝐺′ ⇒


|△+++𝑣 | ≥

(𝛼−1
2

)
,

|△+−−𝑣 | ≥
(𝛼−1

1

) (𝑘−1
1

) (𝛼
1

)
,

|△−−−𝑣 | ≥
(𝑘−1
2

) (𝛼
1

) (𝛼
1

)
.

Proof. Based on Definition 2.1, the edges in subcliques are pos-

itive and the edges between subcliques are negative. For any node

𝑣 ∈ 𝑃𝑖 ∈ 𝐶 , and its two positive neighbors in the same subclique

𝑃𝑖 , they form triangles △+++𝑣 . Similarly, the triangles △−−−𝑣 can be

formed by 𝑣 and its two negative neighbors in different subcliques.

In addition, the triangles △+−−𝑣 can be formed by 𝑣 and its one pos-

itive neighbor in the same subclique and one negative neighbor

in different subcliques. Since the size of each 𝑃𝑖 is no less than

𝛼 , |△+++𝑣 |, |△−−−𝑣 | and |△+−−𝑣 | are at least

(𝛼−1
2

)
,

(𝑘−1
2

) (𝛼
1

) (𝛼
1

)
and(𝛼−1

1

) (𝑘−1
1

) (𝛼
1

)
, respectively. Since the number of triangles meets

the requirements of maximal subgraph𝐺 ′ of𝐺 ,𝐶 must be contained

in 𝐺 ′. Thus, the above lemma holds. □

Algorithm 1: SGReduction(𝐺,𝑘, 𝛼)

1 Procedure CoreBased(𝐺,𝑘, 𝛼) // Lemma 3.1

2 for each 𝑣 ∈ 𝑉 do compute 𝑑+𝑣 and 𝑑−𝑣 ;
3 while ∃𝑣 ∈ 𝑉 , s.t. 𝑑+𝑣 < 𝛼 − 1 or 𝑑−𝑣 < (𝑘 − 1)𝛼 do
4 for each 𝑢 ∈ 𝑁 +𝑣 do 𝑑+𝑢 ← 𝑑+𝑢 − 1;
5 for each 𝑢 ∈ 𝑁−𝑣 do 𝑑−𝑢 ← 𝑑−𝑢 − 1;
6 𝐺 ← 𝐺\𝑣 ;
7 return 𝐺 ;

8 Procedure TriangleBased(𝐺,𝑘, 𝛼) // Lemma 3.2

9 for each 𝑣 ∈ 𝑉 do compute |△+++𝑣 |, |△+−−𝑣 | and |△−−−𝑣 |;
10 while ∃𝑣 ∈ 𝑉 , s.t. |△+++𝑣 | <

(𝛼−1
2

)
or

|△+−−𝑣 | <
(𝛼−1

1

) (𝑘−1
1

) (𝛼
1

)
or |△−−−𝑣 | <

(𝑘−1
2

) (𝛼
1

) (𝛼
1

)
do

11 for each 𝑢 s.t. (𝑢, 𝑣) ∈ △+++𝑣 do |△+++𝑢 | ← |△+++𝑢 | − 1;
12 for each 𝑢 s.t. (𝑢, 𝑣) ∈ △+−−𝑣 do |△+−−𝑢 | ← |△+−−𝑢 | − 1;
13 for each 𝑢 s.t. (𝑢, 𝑣) ∈ △−−−𝑣 do |△−−−𝑢 | ← |△−−−𝑢 | − 1;
14 𝐺 ← 𝐺\𝑣 ;
15 return 𝐺 ;

With Lemmas 3.1 and 3.2, a signed graph reduction algorithm

(SGReduction) is presented in Algorithm 1. The CoreBased proce-

dure is shown in Line 1-7. We first compute 𝑑+𝑣 and 𝑑−𝑣 for each

vertex of 𝐺 (line 2). Then the nodes that do not conform to Lemma

3.1 are deleted (line 3) until no such kind of nodes exist (line 3-6).

Before 𝑣 is deleted from 𝐺 (line 6), we respectively decrease the

positive degree of each positive neighbor and the negative degree

of each negative neighbor by 1 (line 4-5). At last, the reduced signed

network 𝐺 is returned (line 7). Based on Lemma 3.2, the Triangle-

Based procedure is presented in Line 8-15. We first compute |△+++𝑣 |,
|△+−−𝑣 | and |△−−−𝑣 | for each node (line 9). Similarly, the node that

does not satisfy Lemma 3.2 will be deleted until no such kind of

nodes exist (line 10). After the corresponding parameters are pro-

cessed (line 11-13), the node will be safely removed (line 14). At

last, the reduced signed network 𝐺 is returned (line 15).

3.2 The MMCSearch Algorithm
In this section, we present an efficient algorithm with tailored prun-

ing rules to enumerate all MMCs in the reduced signed network.

Theorem 3.3. Given a signed network 𝐺 = (𝑉 , 𝐸+, 𝐸−), for a
multipolarized cliqueC = {𝑃1, 𝑃2, 𝑃𝑖 ...𝑃𝑘 } in𝐺 , if there exists a node 𝑣
in 𝐺 such that ∀𝑢 ∈ 𝑃𝑖 ⇒ (𝑢, 𝑣) ∈ 𝐸+ and ∀𝑤 ∈ {𝑃1, 𝑃2 ...𝑃𝑘 }\𝑃𝑖 ⇒
(𝑣,𝑤) ∈ 𝐸−, then C′ = {𝑃1, 𝑃2, 𝑃𝑖 ∪{𝑣}...𝑃𝑘 } is also a multipolarized
clique in 𝐺 .

Proof. It can be proved following Definition 2.1 directly. □

According to Theorem 3.3, we can extend the famous Bron-

Kerbosch Algorithm, an enumeration algorithm for finding all the

maximal cliques in an undirected graph, to search all MMCs in a

given signed network. Specifically, if we maintain a temporary mul-

tipolarized clique C = {𝑃1, 𝑃2, 𝑃𝑖 ...𝑃𝑘 }, let 𝑄 = {𝑄1, 𝑄2, 𝑄𝑖 ...𝑄𝑘 }
store the candidate vertices where 𝑄𝑖 is the set of vertices that

are positive neighbors of all the vertices in 𝑃𝑖 ∈ C and negative

neighbors of all the vertices in {𝑃1, 𝑃2, 𝑃𝑖 ...𝑃𝑘 }\𝑃𝑖 , we can enlarge

C by adding vertices from 𝑄𝑖 into 𝑃𝑖 . Furthermore, if we update 𝑄

based on the new C′ = {𝑃1, 𝑃2, 𝑃𝑖 ∪ {𝑣}...𝑃𝑘 } and repeat the above

procedure, an MMC can be obtained when no more vertices can be

added into any 𝑃𝑖 .

With the above idea, our maximal multipolarized clique search

algorithm (MMCSearch) is presented in Algorithm 2. For each ver-

tex 𝑣𝑖 in 𝐺 (line 2), we try to search all MMCs containing 𝑣𝑖 (line

1-10). The key unit MMCSearchUnit procedure is shown in Lines

11–20. Note that MMCSearchUnit requires three input parameters

C, 𝑄 , and 𝑅, where C is initialized to preserve the temporary mul-

tipolarized clique (line 2-3), 𝑄 is initialized to store the possible

candidate vertices (line 4-6) and 𝑅 is initialized to record the already

processed nodes (line 7-9). After that, MMCSearchUnit is invoked

(line 10) to search all MMCs. If ∀𝑄𝑖 ∈ 𝑄 and ∀𝑅𝑖 ∈ 𝑅 are empty (line

12) (i.e., current C is maximal), then it checks whether any |𝑃𝑖 | is no
less than 𝛼 (line 13). If all the constraints are satisfied, it returns the

newly detected MMC 𝐶 (line 14). Otherwise, MMCSearchUnit adds

a vertex from 𝑄𝑖 to 𝑃𝑖 , updates the corresponding 𝑄𝑖 and 𝑅𝑖 (line

15-18), and recursively invokes itself to further extend the multi-

polarized clique (line 19). When 𝑣 ∈ 𝑄𝑖 is processed, 𝑣 is removed

from 𝑄𝑖 and recorded into 𝑅𝑖 (line 20).

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of our proposed algorithms on the real-world signed
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Algorithm 2: MMCSearch(𝐺,𝑘, 𝛼)

1 for each 𝑣𝑖 ∈ {𝑣1, 𝑣2 ...𝑣𝑛} ∈ 𝑉 do
2 for each 𝑃𝑖 ∈ C do
3 𝑃1 ← {𝑣𝑖 }; 𝑃𝑖 ← ∅;
4 for each 𝑄𝑖 ∈ 𝑄 do
5 𝑄1 ← 𝑁 +

𝐺
(𝑣) ∩ {𝑣𝑖+1, ..., 𝑣𝑛};

6 𝑄𝑖 ← 𝑁−
𝐺
(𝑣) ∩ {𝑣𝑖+1, ..., 𝑣𝑛};

7 for 𝑅𝑖 ∈ 𝑅 do
8 𝑅1 ← 𝑁 +

𝐺
(𝑣) ∩ {𝑣1, ..., 𝑣𝑖−1};

9 𝑅𝑖 ← 𝑁−
𝐺
(𝑣) ∩ {𝑣1, ..., 𝑣𝑖−1};

10 MMCSearchUnit(C, 𝑄, 𝑅);

11 Procedure MMCSearchUnit(C, 𝑄, 𝑅)

12 if all 𝑄𝑖 = ∅ and all 𝑅𝑖 = ∅ then
13 if all |𝑃𝑖 | ≥ 𝛼 then
14 return 𝐶 = {𝑃1, 𝑃2 ...𝑃𝑘 }
15 for each 𝑣 ∈ 𝑄𝑖 s.t. 𝑄𝑖 ≠ ∅ do
16 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑣}; 𝑄𝑖 ← 𝑄𝑖 ∩ 𝑁 +𝑣 ; 𝑅𝑖 ← 𝑅𝑖 ∩ 𝑁 +𝑣 ;
17 for each 𝑄 𝑗 ∈ 𝑄\𝑄𝑖 do 𝑄 𝑗 ← 𝑄 𝑗 ∩ 𝑁−𝑣 ;
18 for each 𝑅 𝑗 ∈ 𝑅\𝑅𝑖 do 𝑅 𝑗 ← 𝑅 𝑗 ∩ 𝑁−𝑣 ;
19 MMCSearchUnit(C′, 𝑄 ′, 𝑅′);
20 𝑄𝑖 ← 𝑄𝑖\{𝑣}; 𝑅𝑖 ← 𝑅𝑖 ∪ {𝑣};

networks. All the experiments are on PC with two Inter Core

1.80GHz 1.99GHz CPUs and 16GB RAM.

Comparison Algorithms. To the best of our knowledge, there is

no existing work on the MMCS problem. We compare and evaluate

the following algorithms, i.e., MMCSearch
♯
(MMCSearch with only

Lemma 3.1), MMCSearch
∗
(MMCSearch with only Lemma 3.2), and

MMCSearch (Algorithm 2with all pruning rules). All the algorithms

are implemented in Python.

Datasets and Parameters. Three real-world signed networks are

adopted in the experiments, i.e., Bitcoin(5.8K∗35K), Slashdot(77K∗
516K) and Epinion (131K∗841K), which are publicly available on

SNAP (http://snap.stanford.edu). The number after each dataset

represents the corresponding number of nodes and edges, i.e., 𝑛 ∗𝑚.

The parameter 𝑘 of our algorithms is settled from the interval [3,

7] with a default value of 𝑘 = 3; 𝛼 varies from the interval [3, 7]

with a default value of 𝛼 = 5. Unless otherwise specified, when a

parameter is varying, another parameter is set to its default value.

Exp1-Effectiveness Evaluation of SGReduction. In this exper-

iment, we evaluate the effectiveness of the proposed SGReduction

algorithm. Figure 3 reports the number of pruned nodes by Core-

Based procedure, the sum of pruned nodes by CoreBased and Tri-

angleBased when varying 𝑘 and 𝛼 . Clearly, TriangleBased prunes

much more nodes than CoreBased, which proves that its pruning

conditions are stricter. In Figure 3(a)(b)(c), as 𝑘 increases, the num-

ber of pruned nodes by CoreBased increases as well. The same

situation occurs when 𝛼 increases in Figure 3(d)(e)(f). This is be-

cause as 𝑘 or 𝛼 increases, more nodes do not meet the requirement

of the (𝛼 − 1, (𝑘 − 1)𝛼)-signed core in Lemma 3.1.

Exp 2-EfficiencyEvaluation ofMMCSearch. In this experiment,

we evaluate the efficiency of three compared algorithms when vary-

ing 𝑘 and 𝛼 . As shown in Figure 4, the running time of all the

algorithms decreases since as 𝑘 or 𝛼 increases, the power of all

the proposed pruning rules strengthens. Hence, we can conclude

that all the algorithms can complete the search in a short time on

all datasets when varying 𝑘 and 𝛼 and MMCSearch significantly

outperforms other algorithms which reveals the effectiveness of

signed graph reduction and the efficiency of MMCSearch.
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Figure 3: Number of pruned nodes by SGReduction varying
𝑘 or 𝛼
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Figure 4: Running time of compared algorithms varying 𝑘

or 𝛼

5 CONCLUSIONS
In this paper, we introduce a novel subgraph model, namely maxi-

mal multipolarized cliques, to characterize the multiple polarized

structures in signed networks. To search all maximal multipolarized

cliques, we first propose several powerful reduction techniques to

substantially prune the signed network. Then, an efficient algo-

rithm, MMCSearch, is developed to search all MMCs in the reduced

signed network. The experimental results on real-world datasets

demonstrate the efficiency and effectiveness of our algorithm.
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