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Abstract—The booming of Social Internet of Things (SIoT)
has witnessed the significance of graph mining and analysis for
social network management. Online Social Networks (OSNs) can
be efficiently managed by monitoring users’ behaviors within
a cohesive social group represented by a maximal clique. They
can further provide valued social intelligence for their users.
Maximal Cliques Problem (MCP) as a fundamental problem in
graph mining and analysis is to identify the maximal cliques
in a graph. Existing studies on MCP mainly focus on static
graphs, with less attention on the detection and dynamic evolution
of maximal cliques in OSNs. To fill this gap, we adopt the
Formal Concept Analysis (FCA) theory to represent and analyze
social networks. We then develop two novel formal concepts
generation algorithms, termed Add-FCA and Dec-FCA, that
can be applicable to OSNs for detecting the maximal cliques
and characterizing the dynamic evolution process of maximal
cliques in OSNs. Extensive experimental results are conducted to
investigate and demonstrate the correctness and effectiveness of
the proposed algorithms. The results reveal that our algorithms
can efficiently capture and manage the evolutionary patterns
of maximal cliques, including unchanged, changed, added, and
vanished maximal cliques in OSNs, and a quantitative relation
among them is presented. In addition, an illustrative example is
presented to verify the usefulness of the proposed approach.

Index Terms—Maximal Cliques Detection, Maximal Cliques
Evolution, Online Social Networks, Formal Concept Analysis

I. INTRODUCTION

The Internet of Things (IoT) expands the communication
between people to people, people to things, and things to
things [1]. In recent years, with the emergence of smart ob-
jects, the potential for interaction between people and things,
and between things and things has been further explored.
The Social Internet of Things (SIoT) [2], combining Online
Social Networks (OSNs) and IoT, has emerged as an im-
portant Internet application [3] and made the management
of intelligent devices easier and safer for users [4], [5].
Many existing algorithms on OSNs, such as social network
topological structure analysis, have been applied to the SIoT
realm [6].
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With the advent of ubiquitous connectivity coupled with
the proliferation of social network services and mobile/IoT
devices, the number of users of OSNs has greatly increased
in recent years. Mobile users have been using social network
services such as Twitter, Facebook and Weibo to chat, obtain
news and information, and share their videos, which enables
convenient communication between users. Such mobile users
essentially form social groups (cliques). Clique detection aims
to explore the community structure of OSNs and monitor the
behaviors of users within a community, so as to efficiently
manage OSNs, such as security and privacy [7], content
dissemination [8], mobile crowd sensing management [9],
service composition [10], as well as rumors control [11].
The essential of these applications is to efficiently discover
and manage the topological structures of OSNs. For example,
there exist a large number of online water armies on Weibo,
and they can potentially form a community. By managing the
various changes in the structures of this community, we can
predict whether an online water army is the potential rumors
spreader, and further detect the target of their rumors, in order
to prevent the spreading of rumors in time. The control of
rumors is a kind of social network management. Wang et al.
[11] attempted to control the spread of negative information
by establishing a coupling diffusion model of positive and
negative information, and derived the critical conditions for
the negative information diffusion. Motivated by the above
application, the aim of this paper is to detect the maximal
cliques and obtain their evolutionary patterns in OSNs, in order
to provide more valued OSNs services.

Maximal Cliques Problem (MCP), a classic combinatorial
optimization problem in graph theory, is an NP complete
problem. In recent years, MCP has been widely used in mar-
ket analysis, solution selection, signal transmission, computer
vision, fault diagnosis, data mining and other fields. There
exist a range of studies using maximal cliques to analyze
and predict potential churn customers, apply data mining
in grid systems [12], perform protein structure analysis and
classification [13]–[15], predict the structure of proteins from
molecular sequences [16], as well as investigate the functional
relationships between proteins [17]. In particular, in [14], their
method was based on the algorithm proposed by Bron and
Kerbosch, which enumerates all maximal cliques in a graph.
They restricted the search process to the cliques that represent
connected substructures, and this can reduce the number of
cliques to be considered during the search process and the
size of the search tree drastically. In [16], maximal cliques
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were used in a comparative modeling scenario to build side-
chains, regions of main chain, and mix and match between
different homologs in a context-sensitive manner.

MCP has also been applied to social network analysis.
For instance, mining maximal cliques from social networks
can obtain the groups with unique characteristics, where
users can easily obtain targeted recommendation services
or advertisement propagation. For example, in Weibo (an
online social platform for information sharing, dissemination
and acquisition based on user interaction), users select to
become fans of other users according to their career, hobbies,
hometown and other factors. We regard users as nodes in the
social network graph, where the relationship between users
is the edge between nodes. By analyzing the structure of
the social network, we can detect several maximal cliques,
among which some nodes are covered by several maximal
cliques. These nodes are regarded as special key nodes and
can be treated as the core characters in the social network
with relatively extensive contacts. When these core characters
upload or forward the blog in Weibo, the blog will be more
easily seen by more users. If this blog is a rumor, when we
need to refute the rumor, we can find these core characters
easily by detecting the maximal cliques. The reason is that
we can delete this Weibo for controlling the rumor spread,
or to clarify the rumor. However, due to the activities of
human interactions, the topology of social networks usually
possesses the characteristics of time-varying changes. For
example, the relationship between users will change; there
may be new maximal cliques; some maximal cliques may
disappear or change. All the these can lead to the change of
core characters. Therefore, it is important to examine social
networks dynamically.

There have been many approaches for detecting maximal
cliques that can be applicable to social networks. For example,
Kumar et al. [18] presented an algorithm for enumerating
maximal cliques in large-scale social networks. Our recent
work [6] proposed an approach to detect maximal clique
from general static social networks using Formal Concept
Analysis (FCA). There are also several studies on the detection
of maximal cliques in OSNs. For example, Pan et al. [19]
presented an anytime-anywhere approach for Maximal Cliques
Enumeration (MCE). Different from the existing works, this
paper adopts the FCA theory to address the problem of
dynamic maximal cliques detection in OSNs. Specifically, two
concept lattice generation algorithms, called Add-FCA and
Dec-FCA, are developed for the cases that users join in and
leave from OSNs, respectively.

Our main contributions are summarized as follows:
• OSNs-oriented Concept Lattice Generation. The Add-

FCA and Dec-FCA algorithms are developed to generate
concept lattice when the formal context is changed. The
Add-FCA algorithm is devised when the objects and
the attributes increase individually or simultaneously, to
generate new concept lattice for the new updated formal
context. The Dec-FCA algorithm is proposed to generate
new concept lattice for the new updated formal context
where the objects and the attributes decrease individually
or simultaneously. Further, an OSNs-oriented concept

lattice generation algorithm which considers the dynamic
formal context constructed by a given social network is
presented.

• Maximal Cliques Detection. This paper skillfully
switches from the analysis of graph theory to the study
of special formal concepts in the concept lattice. Specifi-
cally, we present an equivalent theorem between equicon-
cepts and maximal cliques. Therefore, the problem of
detecting maximal cliques after adding or deleting nodes
from social networks can be transformed to the problem
of identifying equiconcepts from formal concept lattices.

• Maximal Cliques Evolution. We utilize the public real
datasets to carry out extensive experiments, and validate
the correctness and feasibility of the proposed Add-FCA
and Dec-FCA algorithms. Importantly, our algorithms can
efficiently capture the evolutionary patterns of maximal
cliques including unchanged, changed, added, and van-
ished maximal cliques in OSNs. With the observation
patterns, a quantitative relation among them is then
presented. In addition, aiming to reveal the usefulness of
our algorithms, a real social network is used as a proof-
of-concept study. Then, we use the proposed algorithms
to calculate and analyze the maximal cliques evolution of
this real social network.

The rest of this paper is organized as follows. Section
II overviews the related work of concept lattice generation
algorithms in FCA and FCA-based social network analysis.
The preliminaries on the FCA theory, cliques and maximal
cliques are provided in Section III. Section IV presents a de-
tailed description of the proposed problem. Section V proposes
the algorithms of Add-FCA and Dec-FCA, respectively. The
detection approach of maximal cliques from OSNs and their
evolution are elaborated in Section VI. Section VII presents
the implementation details and carries out experimental results
and analysis. Finally, Section VIII concludes this paper.

II. RELATED WORK

Since we plan to adopt FCA to study the detection and
evolution of maximal cliques in OSNs, this section summa-
rizes the existing research on algorithms of generating formal
concept lattices and maximal cliques detection.

A. Concept Lattice Generation

FCA theory was proposed by Wille in 1982 [20]. It has
played an important role in cognitive computing, pattern
recognition, machine learning, decision-making analysis, web
search, and community recommendation. However, the al-
gorithm for generating concept lattices is a challenge and
important research issue of FCA.

Most existing algorithms on concept lattice generation are
applicable for general static formal contexts. For example,
Ganter et al. [20] proposed a Next Closure algorithm for
obtaining the concept lattice corresponding to a given formal
context. The algorithm termed CMCG [21] was to generate
the concept lattice by using the attribute rank of a concept
matrix. The algorithms in both Nourine [22] and Chein [23]
were also typical algorithms for general formal context. Ma
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et al. [24] introduced the interval-set into the decision formal
context and investigated the interval-set concept lattice and
its attribute reduction method on deciding formal contexts.
Qian et al. [25] studied the construction theory and interval-
set concept lattice, and they further proposed an approach
for constructing interval-set concept lattices on the basis of
exploring the relationship between interval-set concept lattices
and general concept lattices. He et al. [26] devised a method
for generating attribute interval-set to describe incomplete
information.

There are some concept lattice generation algorithms that
deal with dynamic formal context. FastAddExtent [27] pro-
posed a concept lattice generation algorithm when attributes
are reduced, but the time complexity is high. Zhang et al.
[28] put forward the concept lattice generation algorithm when
attributes in the formal context are reduced, but this algorithm
suffers a running time. The Fold [29] and Unfold [30] algo-
rithms were proposed to zoom out to decrease or increase the
granularity levels of attributes in FCA without rebuilding the
new lattice, and they provided classification and preprocessing
procedures that can improve algorithm efficiency. Yang et al.
[31] proposed an algorithm for attribute-incremental formal
context. However, the above algorithms mainly focus on the
problem of deleting or adding attributes/objects, and some
algorithms are not efficient in terms of time and space. There
has not been any existing work on concept lattice generation
that is suitable for a dynamic social network.

B. Maximal Clique Detection

Maximal cliques detection has been widely used in a set of
fields, such as DNA detection and clique enumeration, and it
can also tackle some critical problems of social networks. Das
et al. [32] utilized parallel graph algorithms to enumerate max-
imal cliques for further investigation of biological networks.
Chen et al. [33] firstly proposed an efficient partition-based
algorithm for MCE that addresses the problem of processing
large graphs with limited memory. Bera et al. [34] presented
an efficient algorithm for finding all maximal cliques from a
trapezoid graph.

FCA methodology has been used for topological structures
mining from social networks. For example, in our previous
work [6], we proposed a method to detect maximal cliques
based on FCA. Snasel et al. [35] proposed the idea of using
objects in social networks as a formal context, and the relation-
ship between nodes as an inter-object relationship. Afterwards,
He et al. [36] adopted FCA to address this problem of complex
things in social networks. Krajci et al. [37] also presented the
idea of using FCA to deal with social networks. Unfortunately,
the implementation details of their study were not provided.
Hao et al. [38], [39] constructed the formal context by taking
the nodes in social networks as the objects and attributes of
the formal context; importantly, the k-equiconcept in concept
lattice is defined, and the equivalent theorem between the k-
equiconcept and k-clique is presented for detecting k-cliques
efficiently [6].

In summary, the research on FCA-based OSNs analysis
is still in its infancy. As the form of social networks has

undergone tremendous changes, tapping into the special struc-
ture of social networks has become a hot research area. We
can obtain useful information from the special structure we
have discovered. Social networks are essentially a dynamically
changing network. It is valuable and important to investigate
the dynamic maximal cliques detection with FCA in OSNs.

III. PRELIMINARIES

A. Formal Concept Analysis

FCA is a typical data analysis method. It defines a set
of formal concepts that represent the relationships between
objects and attributes in an information system. These formal
concepts are organized as concept lattices with a partial order.
Unlike traditional methods of data analysis, FCA focuses on
human cognition and understanding of information systems.
It has been widely used in data mining, machine learning,
software engineering, data analysis, ontology and other fields.

In this paper, we intend to use FCA to analyze the structure
of social networks according to the method proposed in [38],
based on which we present a set of definitions in this section.

Definition 1: (Formal Context) A formal context is orga-
nized as a triple K = (A,B,R), where A = {x1, x2, · · · , xn}
is the set of objects, B = {y1, y2, · · · , ym} is the set of
attributes, and R is the binary relation between A and B,
where R ⊆ A × B. (x, y) ∈ R denotes that object x has the
attribute y, and (x, y) /∈ R denotes that object x does not have
the attribute y, where x ∈ A, y ∈ B. Let “1” denote (x, y) ∈ R
and “0” denote (x, y) /∈ R. Then, this formal context can be
viewed as an information system with only “0” or “1”.{

1 (xi, yj) ∈ R
0 (xi, yj) /∈ R

Definition 2: (Operators ↑ and ↓) Given a formal context
K = (A,B,R), ↑ and ↓ on X ⊆ A and Y ⊆ B are
respectively defined as

X↑ = {y ∈ B|∀x ∈ A, (x, y) ∈ R} (1)

Y ↓ = {x ∈ A|∀y ∈ B, (x, y) ∈ R} (2)

For ∀x ∈ A, let {x}↑=x↑. For ∀y ∈ B, let {y}↓ ∈ y↓.
Definition 3: (Concept) Given a formal context K =

(A,B,R), if (X,Y ) satisfies X↑=Y and Y ↓=X , (X,Y ) is
called a concept, and X is the extent of the concept and Y is
the intent of the concept. θ(K) is an operation for obtaining
a concept from formal context K.

Definition 4: (Concept Lattice) For a set of all concepts
of the formal context K = (A,B,R), denoted as a Concept
Lattice, Ω(K), θ(K)⊆ Ω(K) and Ω(K)=

∑
θ(K). φ(K) is a

set of extent for all concepts in Ω(K), and ψ(K) is a set of
intent for all concepts in Ω(K).

In what follows, we provide an example to facilitate the
understanding of a formal context.

Example 1: Table I shows a formal context K. The set
of objects is A = (x1, x2, x3, x4), and the set of attributes
is B = (y1, y2, y3, y4, y5). “1” denotes that there exists the
binary relation between A and B. For example, the object
“x2” has the attributes “y1”, “y2”, and “y3”.
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Fig. 1 illustrates the concept lattice for the context of Table
I. As shown in Fig. 1, each node indicates a formal concept,
and the labels of a node represent intents and extents of the
concepts.

TABLE I
A FORMAL CONTEXT K .

A× B y1 y2 y3 y4 y5
x1 1 1 0 1 1
x2 1 1 1 0 0
x3 0 0 0 0 1
x4 1 1 1 0 0
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Fig. 1. The Concept Lattice of A Formal Context K.

B. Clique and Maximal Clique

Definition 5: (Clique) [38] Let G = (V,E) be an undirected
graph. A clique in G is a subset S ⊆ V such that for any two
vertices vi, vj ∈ S, there exists an edge (vi, vj) ∈ E.

Definition 6: (k-Clique) [38] Let G = (V,E) be an
undirected graph. A k-clique in G is a subset S ⊆ V and
|S| = k such that for any two vertices vi, vj ∈ S, there exists
an edge (vi, vj) ∈ E.

Definition 7: (Maximal Clique) [38] Maximal clique is a
special clique which cannot be extended by including one
more adjacent vertex. In other words, it is a clique which does
not exist exclusively within the vertex set of a large clique.
A subgraph H of a graph G is a maximal clique in G, if
H is isomorphic to complete graph, and there is no vertex
v ∈ V (G)/V (H) so that v is adjacent to each vertex of H .

IV. PROBLEM DEFINITION

No matter in the virtual network world or in the real-
world networks, people will have certain social activities and
form certain social relations among people, as shown in Fig.
2. Let us represent the social relations between users as a
social network, in which each node denotes a user and each
edge indicates the social relationship between users. As time
elapses, some current users may leave the social network, and
some new users may join the social network, resulting in the
time-varying changes of the structure, and also the maximal
clique, of a social network.

With the existing FCA-based maximal cliques detection
approaches that have been developped for a static social

Fig. 2. A Social Network.

Fig. 3. User-incremental Formal Context for Adding Users.

network, we can rebuild a new formal context to update
and extract maximal cliques. However, rebuilding the formal
context requires high computational and time complexity, due
to the large-scale and dynamical properties of OSNs. To solve
this problem, in this paper we devise concept lattice generation
algorithms for the formal context constructed from OSNs and
analyze the relation between formal concepts and the structure
of OSNs. Addressing this challenging problem requires the
solutions of the following three sub-problems:

Sub-problem 1: Devising a concept lattice generation al-
gorithm for the user-incremental formal context constructed
from OSNs, where only users are added/joined. According
to our previous work [38], we know that the objects (users)
and attributes (of users) will be simultaneously added to the
original formal context K1 and updated as K1 ∪ K2, as
shown in Fig. 3. To generate the concept lattice from OSNs,
the attribute-incremental (Fig. 4(a)) and object-incremental
(Fig. 4(b)) concept lattice generation algorithms should be
investigated first.

Sub-problem 2: Devising a concept lattice generation al-
gorithm for the user-decremental formal context constructed
from OSNs, where only users are deleted/left. Similar to Sub-
problem 1, the objects (users) and attributes (of users) are
simultaneously deleted from the original formal context K1

and updated as K1-K2, as shown in Fig. 5. To generate
the concept lattice from OSNs, the attribute-decremental (Fig.
6(a)) and object-decremental (Fig. 6(b)) concept lattice gener-
ation algorithms should be investigated first.
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(a) Attribute-incremental Formal Context

(b) Object-incremental Formal Context

Fig. 4. Attribute/Object-incremental Formal Contexts for Adding Users.

Fig. 5. User-decremental Formal Context for Removing Users.

Sub-problem 3: Analyzing the relation between the formal
concepts and the structure of OSNs for detecting the maximal
cliques and capturing the evolution patterns (as shown in Fig.
7) by using the above concept lattice generation algorithms
proposed in Sub-problems 1 and 2.

V. THE PROPOSED ADD-FCA AND DEC-FCA
ALGORITHMS

To address the problems mentioned in the previous section,
we present two types of concept lattice generation algo-
rithms including object/attribute-incremental algorithms and
object/attribute-decremental algorithms (Hereinafter referred
to as Add-FCA and Dec-FCA, respectively).

(a) Attribute-decremental Formal Context

(b) Object-decremental Formal Context

Fig. 6. Attribute/Object-decremental Formal Contexts for Removing Users.

Fig. 7. Maximal Cliques Evolution in OSNs

A. The Add-FCA Algorithm

Reference [31] is our preliminary work. It has imple-
mented the Algorithm for generating Attribute-Incremental
Concept Lattice. The Add-FCA Algorithm in this paper is
different from reference [31], which includes the Attribute-
Incremental Concept Lattice Algorithm (Algorithm 1) and
the Object-incremental Concept Lattice Generation Algorithm
(Algorithm 3).

1) Attribute-Incremental Concept Lattice Generation Al-
gorithm: In our previous work [31], a fast concept lattice
generation algorithm for attribute-incremental formal context
has been proposed and its correctness has been formally
proved.

Let us consider a problem that a formal context
K1=(A,B1, R1) is dynamically updated by adding a new
formal context K2=(A,B2, R2), as shown in Fig. 4(a), and
finally reach the formal context K=(A,B,R), where A=A,
B= B1 ∪B2, and R=R1 ∪R2. The main idea of the solution
is that: our algorithm is to preserve the previously obtained
concept lattice Ω(K1) and generate the concept lattice Ω(K2)
of the new formal context K2. Then, we make the intersection



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JANUARY 2020 6

of φ(K1) and φ(K2), i.e., φ(K1) ∩ φ(K2), and store it into
a set φ(K). After that, we obtain the intent i for each extent
e ∈ φ(K) via i ← e↑. This working process is depicted in
Algorithm 1.

Algorithm 1 Attribute-Incremental Concept Lattice Genera-
tion Algorithm
Input:

K1 = (A,B1, R1)
K2 = (A,B2, R2)

Output:
Set of concepts Ω(K)

1: Initialize Ω(K1) = ∅,Ω(K2) = ∅,Ω(K) = ∅, φ(K1) =
∅, φ(K2) = ∅, φ(K) = ∅

2: begin
3: Ω(K1)← BasicConcept(K1)
4: Ω(K2)← BasicConcept(K2)
5: end
6: for each θ(X,Y ) ∈ Ω(K1)
7: φ(K1)← X ∪ φ(K1)
8: end
9: for each θ(X,Y ) ∈ Ω(K2)

10: φ(K2)← X ∪ φ(K2)
11: end
12: φ(K)← φ(K1) ∩ φ(K2)
13: for each extent e ∈ φ(K)
14: i← e↑

15: Ω(K)← (e, i) ∪ Ω(K)
16: return Ω(K)
17: end

Line 1 initializes the sets of formal concepts Ω(K1), Ω(K2),
Ω(K), φ(K1), φ(K2), φ(K). Lines 2-5 respectively generate
concept lattices of the formal context K1 and K2 by revoking
the algorithm BasicConcept (as shown in Algorithm 2) which
is a baseline algorithm for generating concept lattice. Lines 6-
8 store all extents of θ(K1) into the set Ω(K1). Lines 9-11
store all extents of θ(K2) into the set Ω(K2). Line 12 takes
the intersection of θ(K1) and θ(K2), and stores them in the set
θ(K). Lines 13-16 traverse θ(K) and find the corresponding
intent of each extent, and store it in the set Ω(K). Finally, the
set Ω(K) returns.

2) Object-Incremental Concept Lattice Generation Algo-
rithm: Similar to algorithm 1, we also devise an object-
incremental concept lattice generation algorithm.

Let us consider a problem that a formal context
K1=(A1, B,R1) is dynamically updated by adding a new for-
mal context K2=(A2, B,R2), as shown in Fig. 4(b), and finally
reach the formal context K=(A,B,R), where A=A1 ∪ A2,
B=B, and R=R1 ∪R2. The main idea of the solution is that:
our algorithm is to preserve the previously obtained concept
lattice Ω(K1) and generate the concept lattice Ω(K2) of the
new formal context K2. Then, we make the intersection of
ψ(K1) and ψ(K2), i.e., ψ(K1) ∩ ψ(K2), and store it into a
set ψ(K). After that, we obtain the extent e for each intent
i ∈ ψ(K) via e← i↓.

Theorem 1: For three given formal contexts K1 =
{A1, B,R1}, K2 = {A2, B,R2}, K = (A1∪A2, B,R1∪R2),

Algorithm 2 BasicConcept
Input:

K = (A,B,R)
Output:

Set of concepts Ω(K)
1: Initialize θ(K) = ∅,Ω(K) = ∅
2: begin
3: for each attribute y ∈ B
4: θ(K)← y↓ ∪ θ(K)
5: end
6: for each extent e ∈ θ(K)
7: i← e↑

8: Ω(K)← (e, i) ∪ Ω(K)
9: Return Ω(K)

10: end

the relation among the set of the intents ψ(K1), ψ(K2), and
ψ(K) satisfies the following equation:

ψ(K) = {Y1 ∩ Y2;Y1 ∈ ψ(K1), Y2 ∈ ψ(K2)} (3)

Proof 1:

1) Y1 is an intent of concepts of K1, Y1 ∈ ψ(K1), Y2 is an
intent of concepts of K2, Y2 ∈ ψ(K2), ∃X1 ⊆ A1, then
(X1, Y1) is a concept and (X1, Y1) ∈ Ω(K1), ∃X2 ⊆
A2, then (X2, Y2) is a concept, (X2, Y2) ∈ Ω(K2). Y1∩
Y2=X↑1 ∩X

↑
2=(X1 ∪X2)↑, due to X1 ∪X2 ⊆ A1 ∪A2,

we have ((X1∩X2)↑↓, (Y1∩Y2)) = ((X1∩X2)↑↓, (X1∩
X2)↑) = Ω(K), hence, Y1∩Y2 ⊆ ψ(K), the intersection
of Y1 and Y2 is the intent of concepts of K.
Besides, Y ∈ ψ(K), ∃Y ⊆ B1 ∪ B2, then (X,Y ) ∈
Ω(K), Y = X↑ = (X ∩ (A1 ∪ A2))↑ = ((X ∩ A1) ∪
(X∩A2))↑ = (X∩A1)↑∩(X∩A2), due to X∩A1 ⊆ A1,
we have (X∩A1)↑ ∈ ψ(K1), and X∩A2 ⊂ A2 we have
(X ∩A2)↑ ∈ ψ(K2), therefore, ψ(K) = {Y1 ∩Y2;Y1 ∈
ψ(K1), Y2 ∈ ψ(K2)}.

2) When X2 = {n}, K2 = {{n}, B,R2}, ψ(A ∪
{n}, B,R) = ψ(A,B,R)∪ {Y ∩n↑, Y ∈ ψ(A,B,R)},
according to 1), ψ({n}, B,R2) = {n}↑.

The above working process is depicted in Algorithm 3.
In this algorithm, Line 1 initializes the sets Ω(K1), Ω(K2),
Ω(K), ψ(K1), ψ(K2), ψ(K). Lines 2-5 respectively generate
the concept lattices of formal context Ω(K1) and Ω(K2) via
the Algorithm 2 BasicConcept. Lines 6-8 store all intents of
Ω(K1) into the set ψ(K1). Lines 9-11 store all intents of
Ω(K2) into the set ψ(K2). Line 12 takes the intersection of
ψ(K1) and ψ(K2) and stores them in the set ψ(K). Lines 13-
16 traverse ψ(K) and find the corresponding extent of each
intent, and store them in the set Ω(K). Finally, the set Ω(K)
returns.

For Algorithm 4, Line 1 initializes a set of concepts Ω(K2)
′

and a set of concepts Ω(K). Line 3 obtains a new formal
context (K2)

′
which only adds attributes. Line 4 generates a

concept lattice Ω(K2)
′

by Algorithm 1 and preserves Ω(K2)
′
.

Line 5 obtains a new formal context (K2)
′′

which adds objects
in the formal context (K2)

′
. Line 6 generates a concept lattice

Ω(K) by Algorithm 3. Line 8 finally returns the set Ω(K).
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Algorithm 3 Object-Incremental Concept Lattice Generation
Algorithm
Input:

K1 = (A1, B,R1)
K2 = (A1, B,R2)

Output:
Set of concepts Ω(K)

1: Initialize Ω(K1) = ∅,Ω(K2) = ∅,Ω(K) = ∅, ψ(K1) =
∅, ψ(K2) = ∅, ψ(K) = ∅

2: begin
3: Ω(K1)← BasicConcept(K1)
4: Ω(K2)← BasicConcept(K2)
5: end
6: for each θ(X,Y ) ∈ Ω(K1)
7: ψ(K1)← X ∪ ψ(K1)
8: end
9: for each θ(X,Y ) ∈ Ω(K2)

10: ψ(K2)← X ∪ ψ(K2)
11: end
12: ψ(K)← ψ(K1) ∩ ψ(K2)
13: for each intent i ∈ ψ(K)
14: e← i↓

15: if e ↑== i
16: Ω(K)← (e, i) ∪ Ω(K)
17: else:
18: break;
19: return Ω(K)
20: end

Algorithm 4 Add-FCA
Input:

K1 = (A1, B1, R1)
K2 = (A2, B2, R2)

Output:
Set of concepts Ω(K)

1: Initialize Ω(K2)′=∅, Ω(K)=∅
2: begin
3: K ′2 ← (A1, B1 ∪B2, R1 ∪R2)
4: Ω(K2)′ ← Attribute-Incremental Concept Lattice

Generation Algorithm(K1,K
′
2)

5: K ′′2 ← (A1 ∪A2, B1 ∪B2, R1 ∪R2)
6: Ω(K)← Object-Incremental Concept Lattice Gener-

ation Algorithm(K ′2,K
′′
2 )

7: end
8: return Ω(K)
9: end

The time complexities of Algorithm 1, Algorithm 2 and
Algorithm 3 are O(n2 + n3), O(n + n3) and O(n2 + n3),
respectively. Hence, the time complexity of Algorithm 4 is
O(n2 + n3) +O(n2 + n3) +O(n+ n2), which is O(n3).

For the BasicConcept algorithm, if the attributes or objects
are added, the formal context needs to be updated and the cor-
responding concept lattice also needs to be built. Therefore, the
time for generating the concept lattice is twice of Algorithm 4.
Particularly, it consumes much more time to generate the new
concept lattice for a formal context including a large number

of objects or attributes.
Obviously, when users are added in OSNs, the objects

(users) and attributes (of users) in the formal context will
increase at the same time. When users are added in OSNs,
we adopt Algorithm 4 to generate the corresponding concept
lattice.

B. The Dec-FCA Algorithm

When users leave from OSNs, both objects (users) and
attributes (users) in the formal context are also decreased
accordingly.

Let us consider a problem that a formal context
K1=(A1, B1, R1) is dynamically updated by deleting the par-
tial formal context K2=(A2, B2, R2), as shown in Fig. 5, and
finally reach the formal context K=(A,B,R), where A=A1-
A2, B=B1-B2, R=R1-R2. The solution idea is described as
follows. Our algorithm is to update the objects set/attributes
set as A′/B′ by deleting all objects /attributes in K2 from K1,
respectively. Then, we can obtain a new formal context K
and generate the concept lattice by revoking the Algorithm 2
BasicConcept.

This working process is depicted in Algorithm 5. In this
algorithm, Line 1 initializes a set of formal concepts Ω(K),
a set of object A, and a set of Attribute B. Lines 3-6 are
in charge of deleting the formal context K2 from the formal
context K1. Then, the resulting formal context K is obtained.
Line 7 generates the concept lattice by revoking the Algorithm
2 BasicConcept. Line 8 finally returns the set Ω(K).

Algorithm 5 Dec-FCA
Input:

K1 = (A1, B1, R1)
K2 = (A2, B2, R2)

Output:
Set of concepts Ω(K)

1: Initialize Ω(K) = ∅, a set of objects A, a set of objects
B, a set of objects R

2: begin
3: A← A1 −A2

4: B ← B1 −B2

5: R← R1 −R2

6: K ← (A,B,R)
7: Ω(K)← BasicConcept(K)
8: return Ω(K)
9: end

VI. MAXIMAL CLIQUES DETECTION AND EVOLUTION

A. Formal Context Construction

A social network g is formulated as a graph with the vertices
indicating a set of individuals and the edges representing the
relations between vertices. In this paper, we adopt the modified
adjacency matrix to represent the formal context of g, that is,
FC(g)=(V, V, I), where I is the binary relation between two
vertices.

Definition 8: (Modified Adjacency Matrix) [38]. Let a
social network be a graph with n vertices that are assumed
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to be ordered from v1 to vn. The n× n matrix M is called a
modified adjacency matrix, in which

M =

 mij = 1 if (vi, vj) ∈ E
mij = 1 if i = j
mij = 0 otherwise

We can easily construct the following formal context (Table
II) of a social network g as shown in Fig. 7 by using Definition
8. Further, the corresponding concept lattice as shown in Fig.
8, is built by using the Algorithm 2 BasicConcept.

TABLE II
THE FORMAL CONTEXT OF A SOCIAL NETWORK g.

V× V V1 V2 V3 V4 V5 V6 V7
V1 1 0 0 0 0 0 0
V2 0 1 1 0 1 1 0
V3 0 1 1 0 1 0 0
V4 0 0 0 1 0 0 1
V5 0 1 1 0 1 1 0
V6 0 1 0 0 1 1 0
V7 0 0 0 1 0 0 1
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Fig. 8. Concept Lattice of Social Network g

For OSNs, in the event of users adding/leaving, a concept
lattice of user-increment can be obtained by Algorithm 4
and a concept lattice of users-decrement can be obtained by
Algorithm 5. There are some users added and some users
removed at the same time, we can use Algorithm 4 and
Algorithm 5, respectively, to obtain the concept lattice of
OSNs.

B. Maximal Cliques Detection

In our previous work [6], we have proposed and proved the
equivalence between the equiconcept and maximal clique.

Definition 9: (Equiconcept) [38]: For a formal context
K=(A,B,R), if a pair (X,Y ) satisfies X↑ = Y, Y ↓ = X
and X = Y , the pair (X,Y ) is an equiconcept, where X is
called the extent of the equiconcept, and Y is called the intent
of the equiconcept. Let β(K) be the set of all equiconcepts
with respect to the formal context K. As shown in Fig. 9, the
nodes circled in red are all equiconcepts.

Theorem 2: [6] Given a social network G, the maximal
cliques detection problem is equivalent to finding β(FC(G)).
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Fig. 9. The Equiconcept of A Concept Lattice

Proof 2: The proof of the above theorem can be found in
[6].

Example 2: The visualization of Ω(θ(FC(g)),≤) is shown
in Fig. 10, and the cliques circled are all maximal cliques.
We can easily identify the following 4 maximal cliques, i.e.,
{1}, {4, 7}, {2, 3, 5}, {2, 5, 6}.

Fig. 10. The Maximal Cliques Detection of A Social Network g

C. Maximal Cliques Evolution

This section mainly explores the evolution of maximal
cliques in OSNs.

Example 3: In a social network g, as shown in Fig. 7, there
are originally 7 nodes, and the corresponding concept lattice
c is built as shown in Fig. 11. When the blue node 3 of the
social network g is deleted, and the red nodes node 8 and node
9 are added, the corresponding concept lattice is represented
as c′ in Fig. 11.

Comparing equiconcepts in c and c′, the following important
observations are obtained:
• Observation 1: When node 3 is deleted from g,

({2, 3, 5}, {2, 3, 5}) disappears from c. This procedure is
described with a blue node and a blue dotted line.

• Observation 2: When node 8 is added in g,
({4, 7}, {4, 7}) (purple node) in c is changed to
({4, 7, 8}, {4, 7, 8}) in c′. This change is visualized with
purple solid line.

• Observation 3: When node 9 is added in g,
({2, 6, 9}, {2, 6, 9}) is generated in c′ but not in c. This
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Fig. 11. The Concept Lattices of A Social Network g at Different Time

procedure is represented with a green node and a green
solid line.

• Observation 4: c and c′ both contain ({1}, {1}) and
({2, 5, 6}, {2, 5, 6}), which are represented as red nodes
and solid lines. Obviously, they are not changed.

Therefore, we can categorize equiconcepts after adding
nodes as follows: (1) unchanged equiconcept, denoted as
UE; (2) changed equiconcept, denoted as CE; (3) added
equiconcept, denoted as AE. The equiconcepts after removing
nodes can also be divided into 3 categories: (1) unchanged
equiconcept, denoted as UE; (2) changed equiconcept, de-
noted as CE; (3) vanished equiconcept, denoted as V E.

In OSNs, we can describe the evolution of OSNs by analyz-
ing the changes of several different categories of equiconcepts,
when the nodes change. For the above example, when the
social network g changes, the evolution patterns of maximal
cliques are extracted as follows:

1) Unchanged maximal cliques: {1} → {1}
{2, 5, 6} → {2, 5, 6}

2) Changed maximal cliques: {4, 7} → {4, 7, 8}
3) Added maximal cliques: ∅ → {2, 6, 9}
4) Vanished maximal cliques: {2, 3, 5} → ∅
We can restore the evolution of maximal cliques in OSNs

by comparing equiconcepts before and after the change. This
is the advantage of our proposed approach which can benefit
MCP.

VII. EXPERIMENT AND ANALYSIS

This section mainly carries out experiments and evaluates
the performance of the proposed approach.

A. Data Sets

We use three real-world datasets in our experiments. The
description of the datasets are as follows.
• Data set I is a typical social network among 34 members

of a Karate club at a university in the United States in
the 1970s.

• Data set II is another dataset on the social network of
frequent interactions between 62 dolphins in a community
living off Doubtful sound, New Zealand [38].

• Data set III is collected from The Red Hot Jazz Archive
digital database which is a network of 198 Jazz musi-
cians.

B. Experiment Configuration

All experiments are implemented with Inter(R) Core(TM)
i5-7500CPU@3.40GHz 3.41GHz8GB-RAM PC under Win-
dows 10 operating system.

Since we are using the public social network datasets and
the nodes in datasets are static, our experiments simulate the
addition and removal of nodes in the datasets by dividing them
into two parts.

(1) If new nodes (i.e., new users) join the original social
network, the nodes of the three datasets are divided
into the original nodes and the added nodes. The
comparison is conducted before and after adding new
nodes. The evolution of maximal cliques verifies the
correctness of the proposed Add-FCA algorithm.
Consequently, the experimental datasets for Add-
FCA are listed in Table III.

TABLE III
EXPERIMENTAL DATASETS FOR ADD-FCA

Dataset ] of original ] of added ] of final
nodes nodes nodes

Karate
26 8 34
30 4 34
32 2 34

Dolphin
42 20 62
50 12 62
58 4 62

Jazz
140 58 198
180 18 198
190 8 198

(2) If some nodes (i.e., current users) leave from the
original social network, we split the nodes of the
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above three datasets into the original nodes and the
removed nodes. The evolution of maximal cliques
verifies the correctness of the proposed Dec-FCA
algorithm. Consequently, the experimental datasets
for Dec-FCA are listed in Table IV.

TABLE IV
EXPERIMENTAL DATASETS FOR DEC-FCA

Dataset ] of original ] of removed ] of final
nodes nodes nodes

Karate
34 10 24
34 6 28
34 1 33

Dolphin
62 18 44
62 8 54
62 2 60

Jazz
198 30 158
198 12 186
198 2 196

C. Experimental Results

1) Add-FCA based Maximal Cliques Detection and Evolu-
tion: According to Table III, the detection results of maximal
cliques and their evolution are shown in Tables V, VI, and
VII.

TABLE V
EXPERIMENTAL RESULTS FOR DATA SET I (KARATE) UNDER ADD-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
added
nodes

] of
β(K)

] of
UE

] of
CE

] of
AE

26 21 8 36 15 6 15
30 27 4 36 18 9 9
32 31 2 36 21 10 5

TABLE VI
EXPERIMENTAL RESULTS FOR DATA SET II (DOLPHIN) UNDER ADD-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
added
nodes

] of
β(K)

] of
UE

] of
CE

] of
AE

42 46 20 84 31 15 38
50 60 12 84 48 12 24
58 76 4 84 75 1 8

TABLE VII
EXPERIMENTAL RESULTS FOR DATA SET III (JAZZ) UNDER ADD-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
added
nodes

] of
β(K)

] of
UE

] of
CE

] of
AE

140 267 58 746 35 232 479
180 551 18 746 289 262 195
190 590 8 746 329 261 156

2) Dec-FCA based Maximal Cliques Detection and Evolu-
tion: According to Table IV, the detection results of maximal
cliques and their evolution are shown in Tables VIII, IX, and
X.

TABLE VIII
EXPERIMENTAL RESULTS FOR DATA SET I (KARATE) UNDER DEC-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
left
nodes

] of
β(K)

] of
UE

] of
CE

] of
V E

34 36 10 21 17 4 15
34 36 6 29 26 3 7
34 36 1 35 35 0 1

TABLE IX
EXPERIMENTAL RESULTS FOR DATA SET II (DOLPHIN) UNDER DEC-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
left
nodes

] of
β(K)

] of
UE

] of
CE

] of
V E

62 84 18 50 35 15 34
62 84 8 62 53 9 22
62 84 2 77 75 2 7

3) Results Analysis: From experimental results shown from
Tables V-VII, we obtain the following relationship between the
number of three types of equiconcepts when nodes are added,
which is presented in Theorem 3.

Theorem 3: The number of equiconcepts generated from
formal context K constructed from a social network g′ equals
to the summation of the number of equiconcepts generated
from original formal context K1 constructed from a social
network g and the number of newly added equiconcepts under
K=K1 ∪K2. It is formally represented as

|β(K)| = |β(K1)|+ |AE| = |UE|+ |CE|+ |AE|

where |x| is the cardinality of set x.
Example 4: As can be seen from the second row of Table

VII, the number of original users in Jazz social network is 180,
and 551 equiconcepts are detected by the proposed Add-FCA
algorithm. After adding 18 nodes to this OSN, we detect 746
equiconcepts. Comparing the equiconcepts before and after
adding the nodes, we find that 289 UEs, 262 CEs, and 195 new
equiconcepts have been added, and they satisfy the equation:
746 = 551 + 195 = 289 + 262 + 195.

From the experimental results shown in Tables VIII-X, we
also obtain the relationship between the number of three types
of equiconcepts when nodes are removed, and this relationship
can be characterized in Theorem 4.

Theorem 4: The number of equiconcepts generated from
formal context K constructed from a social network g′ equals
the number of equiconcepts generated from the original formal
context K1 constructed from a social network g subtracting
the number of vanished equiconcepts under K=K1-K2. It is
formally represented as

|β(K)| = |β(K1)| − |V E| = |UE|+ |CE|

where |x| is the cardinality of set x.
Example 5: Let us observe the data in the second row of Ta-

ble X, the number of the original users in Jazz social network
is 198, and 746 equiconcepts are detected by the Algorithm 2
BasicConcept. After 12 nodes are removed from this OSN, we
detect 605 equiconcepts. Comparing the equiconcepts before
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TABLE X
EXPERIMENTAL RESULTS FOR DATA SET III (JAZZ) UNDER DEC-FCA

] of
orig-
inal
nodes

] of
β(K1)

] of
left
nodes

] of
β(K)

] of
UE

] of
CE

] of
V E

198 746 30 471 125 346 275
198 746 12 605 434 171 141
198 746 2 743 737 6 3

and after removing the nodes, we find that there are 434
UEs, 171 CEs, and 141 VEs, and they meet the equation:
605 = 746− 141 = 434 + 171.

Comparing all the experiments, we find that the increase
or decrease of nodes will lead to uncertain effects on the
topology of maximal cliques in social networks. But, there
are definite relationships among the number of equiconcepts
obtained from formal context K and K1, and the evolution
of maximal cliques in OSNs can be captured by investigating
four types of equiconcepts (UE,CE,AE, V E).

Additionally, the solution proposed in this paper can cor-
rectly find the maximal cliques, and classify them, while re-
ducing computational complexity under the dynamic changes
of OSNs.

D. Illustrative Example

In order to better reveal the working process of our maximal
cliques evolution algorithm, this section presents an illustration
by utilizing a real dataset with a time span of 9 years.
The dataset records the interaction between more than 1,000
directors of 384 companies in Norway from 2002 to 2011 [40].
During this period, some companies went bankrupt, and some
directors switched jobs or resigned. Each director has a unique
identifier (number range from 1-6000). In our paper, we use
the data in August of each year as the formal context to detect
and compare the maximal cliques to get the evolution of the
maximal cliques each year. Further, the collaborations among
these companies’ directors can be easily exploited.
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Fig. 14. The Number of Unchanged Maximal Cliques (2003-2011) vs. (2002).

Fig. 12 shows the number of maximal cliques between
August 2002 and August 2011. It can be seen from this graph
that the number of maximal cliques changes every year, but in
general, over time, although 17 companies have closed down
in 2009, the number still increased compared with that in 2002.

Fig. 13 shows the number of unchanged maximal cliques
in each year from August 2002 to August 2011 (the others
are changed maximal cliques, vanished maximal cliques, and
added maximal). It can be seen from Fig. 13 that since 2009,
the number of unchanged maximal cliques has increased,
which also shows that the community structure of this social
network is more stable.

Fig. 14 shows the number of unchanged maximal cliques
from August 2003 to August 2011 compared with August
2002. We can see that the number is getting less and less, and
by 2008 there is no longer the unchanged maximal cliques.

We specifically analyze the experimental results
data corresponding to Figure 3. In 2007, there are
6 maximal cliques that are the same as in 2002:
{204, 2193, 2258, 3521, 5082}, {2626, 3850, 4579, 5235},
{396, 3102, 3198, 3827}, {2563, 3964, 4363, 4600},
{23, 2995, 3253}, {797, 3394, 3827, 4072}, and in 2008, these
6 maximal cliques which exist in 2007 has either changed or
vanished. Here we illustrate the first maximal clique, which
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has evolved into {204, 1865, 2193, 2258, 5082, 5468, 5493}
in 2008. Compared with the formal context in 2002 and
2008, the node with ID 3521 was deleted in 2008 (It exists
in the formal context in 2002), and the node with ID 1865,
5468, and 5496 were added in 2008 (It does not exist in
the formal context in 2002), therefore, we regard node with
ID 3521 as a key node that maintained the maximal clique
{204, 2193, 2258, 3521, 5082} from 2002 to 2007.

VIII. CONCLUSIONS

Aiming to achieve the efficient services provision in SIoT,
this paper has proposed innovative solutions for efficient
detection of maximal cliques and effective management of
their evolution in OSN based on the FCA theory. Although
the equivalence between maximal cliques and equiconcepts
has been proposed and proved in our previous work, it has not
considered the characteristics of dynamic changes of maximal
cliques in OSNs. In addition, the evolution of maximal cliques
has not been captured in the event that users are added and/or
removed. This paper has proposed two algorithms, Add-FCA
and Dec-FCA, that can be applied to OSNs for facilitating
the generation of formal concepts due to the reconstruction of
formal contexts in OSNs. The correctness and effectiveness of
the proposed algorithms have been validated through extensive
experiments. By capturing the evolutionary process of maxi-
mal cliques in OSNs, the proposed algorithms can quickly
and accurately identify four types of maximal cliques (i.e.,
unchanged, changed, added and vanished maximal cliques).
Importantly, a quantitative relation among the four types of
maximal cliques is presented for efficiently extracting key
nodes and stable communities in OSNs. In addition, a case
study is presented to verify the usability of the approach and
demonstrate the applicability to other potential fields such as
protein structure analysis and DNA self-assembly.
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