
328 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

A Socially-Aware Dependent Tasks Offloading
Strategy in Mobile Edge Computing

Yanqi Gong, Fei Hao , Liang Wang , Member, IEEE, Liang Zhao , Member, IEEE,
and Geyong Min , Member, IEEE

Abstract—With the advent of 5G, Mobile Edge Computing
(MEC), a promising computing paradigm sits closer to users than
cloud computing, is being broadly used in various Internet of
Things (IoT) applications, and achieve high-quality user expe-
rience. Task offloading, as a critical research issue in MEC, is
playing an important role in optimizing computational resources
and management. However, many tasks are executed dependent on
the computational results of other tasks. Moreover, in the case of
offloading tasks with other devices, it is often required to consider
the success rate of offloading, since not all users are willing to
lend their mobile devices to others for task execution. To address
this challenge, by taking social relationships between users into
account, this paper intends to combine computational resources of
local devices and edge clouds and provide more flexible offloading
and execution solutions, for achieving the efficient offloading of
dependent tasks with the joint consideration of network latency
and energy consumption. This paper develops a dependent task
offloading strategy based on Bipartite Graph Matching. Exten-
sive simulations are conducted for validating the effectiveness of
our proposed strategy. Experimental results demonstrate that our
proposed strategy can significantly minimize the overhead com-
pared with other baseline strategies. In particular, the overhead
is reduced 8.2%, compared with the strategy which consider the
Device-to-Device (D2D) offloading only.

Index Terms—D2D, dependency task offloading, energy
consumption, mobile edge computing, network latency.

Manuscript received 20 April 2022; revised 30 December 2022; accepted 23
January 2023. Date of publication 30 January 2023; date of current version 8
September 2023. This work was supported in part by European Union’s Horizon
2020 research and innovation programme through the Marie Sklodowska-Curie
under Grant 840922, in part by the National Natural Science Foundation of China
under Grants 61702317 and 62071283, in part by the Ministry of Education
Humanities and Social Sciences Research Youth Fund Project under Grant
22YJCZH046, in part by the Natural Science Basic Research Plan in Shaanxi
Province of China under Grant 2022JM-371, and in part by the Fundamental
Research Funds for the Central Universities, China under Grants GK202103080
and GK202003075. Recommended for acceptance by M. Obaidat.
(Corresponding authors: Fei Hao, Liang Zhao.)

Yanqi Gong and Liang Wang are with the Key Laboratory of Modern Teaching
Technology, Ministry of Education, Xi’an 710062, China, and also with the
School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
(e-mail: gyqi@snnu.edu.cn; wangliang@snnu.edu.cn).

Fei Hao is with the Key Laboratory of Modern Teaching Technology, Ministry
of Education, Xi’an 710049, China, and also with the School of Computer
Science, Shaanxi Normal University, Xi’an 710119, China, and also with the
Department of Computer Science, University of Exeter, EX4 4QF Exeter, U.K.
(e-mail: feehao@gmail.com).

Liang Zhao is with the School of Computer Science, Shenyang Aerospace
University, Shenyang 110136, China (e-mail: lzhao@sau.edu.cn).

Geyong Min is with the Department of Computer Science, University of
Exeter, Exeter EX4 4QF, U.K. (e-mail: g.min@exeter.ac.uk).

Digital Object Identifier 10.1109/TSUSC.2023.3240457

I. INTRODUCTION

IN RECENT years, the fifth generation (5G) of mobile com-
munication system has been born with the continuous devel-

opment of mobile technology, the connection of massive smart
devices, and the booming growth of mobile data volume [1],
[2]. With the arrival of 5G, applications such as Internet of
Things, virtual reality, and ultra-high-definition video are all
being used in people’s daily lives widely [3]. However, these
applications often require high bandwidth and low latency, in
which Mobile Edge Computing (MEC) has emerged in response
to this demand. Without MEC, all aforementioned applications
were executed on mobile devices or cloud platforms. If we
process the computing on mobile devices, the computing re-
sources of mobile devices are too small [4]. In contrast, if we
process them on cloud, the resource-intensive applications often
requires transmitting huge amounts of data between mobile
device and remote cloud server, resulting in unpredictable com-
munication latency [5], [6]. Therefore, Mobile Edge Computing
(MEC) becomes a promising solution to overcome these draw-
backs [7], [8], [9], [10], [11]. Compared with cloud computing,
MEC server is a device sitting closer to the user with good
computational process ability. Thus, MEC can provide a better
service experience with lower latency.

However, there are still many challenges with MEC. In real
life, many tasks do not exist alone, in which it may need to
be interdependent with other tasks, i.e., task requests from the
same user are often be divided into a set of independent or de-
pendent tasks, which are denoted as jobs [12]. For example, data
compression, transmission, and display, these dependent tasks
associated with the same job need to be executed sequentially
according to the dependency relationships, i.e., the subsequent
tasks need to wait for all their predecessors to complete their
execution. Dependency relationships between tasks are critical
factors that require to be considered for offloading decision-
making [12], [13].

Take the example of collaborative traffic real-time monitoring
in social awareness, which happens all around us. First of all,
the purpose of socially aware collaborative traffic real-time
monitoring is to collect traffic conditions such as congestion
or accidents in a timely manner. Second, such applications are
useful for many transportation services such as route planning,
traffic management [14]. Moreover, the execution of a task with
traffic condition information is generally dependent on the other
tasks. This is because only after executing the previous task with

2377-3782 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5288-5523
https://orcid.org/0000-0003-2719-2463
https://orcid.org/0000-0001-5829-6850
https://orcid.org/0000-0003-1395-7314
mailto:gyqi@snnu.edu.cn
mailto:wangliang@snnu.edu.cn
mailto:feehao@gmail.com
mailto:lzhao@sau.edu.cn
mailto:g.min@exeter.ac.uk

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 329

Fig. 1. Collaborative traffic real-time monitoring application.

traffic condition information, the current task can make the next
decision based on the results. Traditionally, traffic monitoring is
performed by analyzing the data from statically installed traffic
cameras, which generally do not have a dense coverage [15].
And the data collected by these traffic cameras is required to
be transmitted to the cloud for analysis and processing, which
invariably brings relatively high bandwidth, energy and latency
costs.

A socially-aware dependent tasks offloading strategy in MEC
can be a good solution for addressing the above challenge. When
we consider social relationships, we can choose the target device
to offload among the devices that have social relations with the
users. Hence, the range of target devices to choose from will
be narrowed, thereby both latency and energy consumption can
be reduced. In particular, the vehicles and pedestrians equipped
with sensing devices (e.g., mobile phones, GPS sensors, dash
cam) provide an opportunity for collecting a large amount of
traffic data in real-time. For example, a networked dash cam can
capture traffic conditions in front of the car and then transmit the
data to an edge server for further analysis. In addition, pedestri-
ans in the car can use their mobile phones to react in real time
to the traffic conditions on their road. Pedestrians and drivers
on other roads can share information via their mobile phones, as
shown in Fig. 1. This allows drivers to access traffic conditions in
real time through edge servers and others. The relevant authori-
ties can also deal with the problematic road sections and control
the traffic accordingly. There have been some relevant research
works for addressing the problem in the above scenario. Cuervo
et al. proposed an energy-efficient task offloading framework
called MAUI in [16], to fully utilize the computational resources
of users’ friends. Some researchers attempted to incorporate
the social relationships into the task offloading in MEC. Chen
et al. [17] devised an unique socially-motivated cooperative
MEC paradigm, in which the social connection structure among
mobile and wearable device users are used to perform effec-
tive collaborative computing task executions. In Nonorthogonal
multiple access (NOMA)-assisted energy-harvesting large IoT

applications, Pei suggested a socially conscious joint resource
allocation and compute offloading [18].

However, the above studies either investigated the dependent
task offloading without taking social awareness into account,
or studied the socially-aware offloading for the tasks without
dependencies, which will both affect the success rate of task
offloading to a certain extent. In fact, the social awareness can
be used to optimize the dependent task offloading in MEC and
further facilitate the computation of various IoT applications.
Therefore, this paper focuses on the offloading between tasks
with dependency relationship. To be specific, we consider both
network latency and energy consumption and develop an op-
timized dependent tasks offloading strategy in MEC. Consid-
ering the user’s requirements and real-time device resources,
we adopt the following four types of offloading strategies, (1)
local execution on the devices, (2) execution locally by virtue of
Device-to-Device (D2D) offloading, (3) execution on the edge
clouds directly, and (4) execution on the edge clouds for D2D
offloading. In addition, we take social awareness into account
as well, transform the social relationships of users in practice
into the social relationships of devices, in order to improve the
effectiveness and efficiency of tasks offloading. It is worth men-
tioning that, in the case of offloading tasks with other devices, it
is often required to consider the success rate of offloading, since
not all users are willing to lend their mobile devices to others
for task execution. To address this challenge, by taking social
relationships between users into account, this paper proposes a
socially-aware dependent tasks offloading strategy. Therefore,
how to obtain the social relations between users is a very
challenging problem. In addition to this, this paper adds social
awareness to the constraints, making the optimization model
more complex and harder to implement. The major contributions
of this paper are summarized as follows.
� The problem on socially-aware dependent task offloading

addressed in this paper is modeled as a multi-objective
optimization problem. Technically, we constrain tasks in
terms of latency to satisfy dependencies between tasks.
With this constraint, we define the overhead function U
by taking both network latency and energy consumption
into account. Further, an optimized offloading strategy of
dependent tasks is obtained by minimizing the U value.

� The vertex set in bipartite graph can be partitioned into
two mutually disjoint subsets, and the two vertices de-
pendent on each edge in the graph belong to these two
mutually disjoint subsets, and the vertices within the two
subsets are not adjacent to each other. Inspired by these
unique features of bipartite graph, the set of tasks and
set of devices can be regarded as two vertex sets. Hence,
it is very convenient and effective to model the problem
of dependent tasks offloading with the bipartite graph
matching. And we integrate the social relationships into
the process of device computation and network resource
sharing. Therefore, the selection range of target devices
is narrowed, thereby both latency and energy consumption
can be reduced. Hence, we propose a socially-aware depen-
dent tasks offloading method based on bipartite matching
algorithm.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

� Extensive simulation are conducted for validating the ef-
fectiveness of our proposed socially-aware dependent tasks
offloading strategy in terms of network latency and energy
consumption. The simulation results demonstrate that our
proposed algorithm can significantly save the energy con-
sumption and reduce the network latency. The reason is that
we consider both latency and energy consumption, so that
the final selected offloading strategy will lead to a minimal
overheadU , and further improve user’s service experience.
Furthermore, we present the 95% confidence interval of the
results to indicate that the difference in the results is not
due to the randomness of the data.

The structure of this paper is organized as follows. Section
II presents an overview of related work. After constructing a
system model of our proposed socially-aware dependent tasks
offloading scheme, the problem formulation of this research
is provided in Section III. Section IV describes the offloading
strategy for the proposed problem and describes the algorithm,
and then simulation results and performance evaluation are
presented in Section V. Finally, Section VI concludes this paper
including future work.

II. RELATED WORK

MEC has received a lot of attentions from both academia and
industrial in recent years [19], [20], [21]. Recently, the European
Telecommunications Standards Institute (ETSI) has introduced
the idea of Multi-Access Edge Computing (MAEC) in their 5G
standard [22]. The distributed MEC servers at the network’s edge
are used in MAEC to deliver cloud computation and IT services
with low latency, high bandwidth, and real-time processing. Task
offloading is one of the most important aspects of MEC [7],
[23]. The majority of prior research has focused on reducing
the computational delay of tasks, improving service quality, or
lowering the energy consumption of edge devices [24], [25],
[26].

Mao et al. [27] investigated the problem of dynamic computa-
tion offloading for single-device with energy harvesting capabil-
ity in MEC. Cuervo et al. [16] addressed the joint optimization
problem of task offloading decision and resource allocation with
the aim of reducing the total energy consumption of the system.
In particular, Chen et al. [28] presented an energy-efficient
task offloading approach that aims to reduce the total energy
consumption of collaborative task execution amongst devices.
Reference [29] proposes an energy-efficient D2D-assisted relay
framework to minimize signaling overhead and energy con-
sumption. Combining edge computing and D2D communication
technology, Yang [30] proposed a joint optimization scheme of
task offloading and resource allocation based on edge computing
in 5G communication network to improve task processing effi-
ciency. The joint computational offloading and user association
problem was addressed in Ref. [31] in order to reduce the overall
energy consumption of both mobile users and MEC servers.
Chen et al. [8] investigated the task offloading problem to mini-
mize the latency while saving the battery life of the device. [32]
studied the multi-user multi-task computational offloading prob-
lem, where they determined the energy harvesting strategy and

task offloading decision by using the Lyapunov optimization
approach. In [33], a novel task offloading problem was studied, in
which each task demands a specific network function with a tol-
erable delay, with the goal of increasing the number of authorised
requests while lowering the operating cost. Green MEC with an
energy harvesting device was studied in [27], where an efficient
computational offloading strategy was devised to reduce exe-
cution delays and task failures. The task offloading problem of
completing computational tasks under a given delay constraint
while minimizing the total communication and computational
energy consumption was investigated in [34]. Chen et al. [35]
proposed a strategic computation offloading algorithm based
on double deep Q-network (DQN) to learn optimal strategies
without prior knowledge of network dynamics.

You et al. [20] presented an energy-efficient computational
resource allocation paradigm for for MEC with the assumption
that the device users are prone to cooperate. The social factors
are emerging as a novel and important dimension in the design of
future network systems. For example, Zhao et al. [36] presented a
social computing-assisted data packet forwarding scheme in Ve-
hicular Ad-hoc Networks (VANETs). Regarding tasks offload-
ing in IoT applications, Pei et al. [18] developed a socially aware
joint resource allocation and computation offloading strategy for
reducing the energy consumption as well as network latency. The
reference [37] studies the problem of component allocation con-
sidering social relationships in multi-access edge computing. An
energy-efficient task assignment method based on Monte-Carlo
search tree (MCTS), named task assignment solution based on
Monte Carlo Tree Search algorithm (TA-MCTS) is proposed.
Fan et al. [38] developed a collaborative task offloading scheme
for D2D-assisted fog computing networks, in order to maximize
the social revenue of each user, and reduce the average task
execution latency.

The dependencies of tasks are important factor to be con-
sidered since the applications may not be executed success-
fully if the dependencies of tasks are not taken into account
when offloading these applications [39]. Existing work on ser-
vice caching has typically focused on the problem of joint
optimization of services deployment and tasks offloading in
MEC [4], [40], [41], [42]. Lin et al. [43] proposed a D2D
(Device-to-Device) collaborative computation offloading and
resource allocation system to minimize the task execution cost.
Aiming to maximize the computation rate of all end devices, [44]
investigated the joint optimization problem of computational
paradigm selection and system transmission time allocation for
end devices by considering a binary offloading model. In MEC,
Deep Reinforcement Learning (DRL) is used to deal with the
task offloading problem [45], [46], [47], [48]. However, these
methods assume that offloading tasks are independent without
considering the intrinsic dependencies between tasks in real
applications. In practice, many applications are composed of
related tasks, where the output of some tasks are the inputs
of other tasks. A Maximum Reliability Offloading Algorithm
(MROA) is proposed [49]. The main idea is to decompose
the given constraints and dynamically adjust the decomposed
constraints. The reference [50] establishes an actor-critic mech-
anism embedded in two layers for the DAG-based multi-tasks

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 331

TABLE I
SUMMARY OF EXISTING WORK

computing offloading strategy in the MEC system, and proposes
a DRL-based algorithm. Recently, Lv et al. [51] proposed a
table-based task offloading algorithm (TBTOA). While satis-
fying service cache constraints and UE battery capacity con-
straints, TBTOA jointly optimizes the task completion time and
energy consumption of edge servers. Although the above works
consider the dependencies between tasks, they do not consider
social relationships.

Table I summarizes the features of existing work.
Although all aforementioned works have studied task offload-

ing in MEC, most of them only considered energy consumption
or latency separately. The newly existing works investigated the
task offloading model with the consideration of both latency and
energy consumption, but they have not taken social awareness
or the dependencies between tasks into account. It may cause
the failure of task offloading or inaccurate execution results.
Motivated by this, our work takes into account not only the de-
pendencies between tasks, but also the social relationships, with
the joint optimization of network latency and energy consump-
tion, that makes our task offloading model more comprehensive
in this work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section discusses the system model which can provide
a good understanding to the structure of the whole system.
Our system model is composed of task dependency model and
network model. To be specific, the task dependency model
describes how the dependencies between tasks are represented,
and the network model characterizes the offloading of tasks in
the edge nodes. Then, the problem is also formulated.

A. Task Dependency Model

We assume that one or several applications (e.g., vehicle
recognition, face recognition) got to be executed at the edge
of network. The execution of those applications is usually di-
vided into multiple tasks, each of which may be offloaded and
executed at one edge node. The set of tasks can be represented by
V={v1, v2, . . . , vn} and n = |V | denotes the amount of tasks.
Considering the dependencies between the tasks, a Directed
Acyclic Graph (DAG) G = (V,E) representing the dependen-
cies between tasks with V indicating the set of tasks and E
denoting the set of edges representing precedence constraints,
is employed for modelling the dependencies between the tasks.
Mathematically, an edge exists between task v and task v′ iff
there is data transmission between them (i.e., the task v′ can

Fig. 2. Dependencies between tasks.

be started execution only when task v completed and sent the
corresponding execution results to task v′). Thus, we use avv′

to denote the amount of data that needs to be transmitted from
task v to task v′.

As shown in Fig. 2, we assume that the set of tasks n = 7,
and there is a dependency between task 1 and task 2. Obviously,
task 2 can only be executed after receiving the execution results
of task 1.

B. Network Model

In our network model, the set of edge nodes is denoted as
M = {m1,m2, . . . ,ml}with l = |M | indicating the number of
edge nodes which are connected each other through various net-
work connections. More, the unit data communication latency
from edge node m to m′ is denoted by cmm′ (if m = m′, then
cmm′ = 0). SupposeMv denote the set of edge nodes satisfying
the service constraints of task v ∈ V . This implies that task v
can only be executed by one edge node inMv . Due to resources
constraint, we assume that each edge nodem ∈M dedicates just
C(m) CPU cycles to these tasks. Task v will take tvm execution
time and rvm CPU cycles per second if it is offloaded to edge
node m.

Fig. 3 shows a mapping between tasks and edge nodes. It de-
picts that the set of edge nodes that satisfy the tasks. Concretely,
task 1 can only be executed at edge nodem1 and task 2 can only
be executed at edge node m2.

C. Social Relationship Model

When the two devices belong to the same user, or the users
of the two devices have a certain social relationship, such as a
kinship, a friendship, and a colleague relationship. In practical
applications, two device users can quickly detect their social
relationships by identifying the common social characteristics
between them through a local matching process. For example,
two device users can detect the social relationship between them
by visiting online social media such as WeChat and Twitter.
The social relationship between users affects the degree of trust
users have in others. In this paper, we assume that the user has

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

332 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

Fig. 3. Mapping between tasks and edge nodes.

Fig. 4. Social relationship model.

trustworthy social relationships with his friends and relatives.
When a task issued by a user needs to be offloaded to other
mobile devices for execution, we first consider the mobile device
that has a social relationship with the user. However, not all
mobile devices that have a social relationship with the user are
eligible for offloading. When the distance between the user and
the mobile device of his relatives and friends is long, the user
cannot offload tasks to perform on the mobile device. There-
fore, the target device for task offloading needs to satisfy two
conditions. First, there is a social relationship between the user
device and the target device. Second, the transmission distance
between the user device and the target device is relatively short,
that is, there is a connection relationship between the devices.

As shown in Fig. 4, we assume that User1 trusts User2 since
User1 transfers a task to User2, which is called social link. On
account of there is a device connection relationship between the
device ofUser1 and the device ofUser2, the task sent byUser1
can be offloaded to the device of User2 for execution.

D. Problem Formulation

With the above system model, the problem of socially-aware
dependent tasks offloading in MEC is mathematically formu-
lated as follows. To better present the problem, the main symbols
used throughout this paper are given in Table II.

TABLE II
THE MAIN SYMBOLS USED THROUGHOUT THIS PAPER

Input: the inputs in a socially-aware dependent tasks offload-
ing strategy based on dependencies in MEC include: tasks with
dependencies, local mobile devices and edge cloud virtual ma-
chine devices, the property of tasks, the property of computing
devices.

Constraints:
1) Constructing a DAG for dependent tasks;
2) A binary variable Zm

v used to indicate whether task v is
offloaded to edge nodemwith start time tv and edge node
mv

� All tasks should be offloaded: v ∈ V ,
∑

m∈M Zm
v = 1;

� Service constraint: task v ∈ V can only be offloaded to
an edge node configured with the corresponding required
service, such as edge nodeMv ,

∑
m∈Mv

Zm
v = 1, ∀v ∈ V ;

� Dependency constraint: for any < v, v′ >∈ E, all prior
tasks are completed and the required data are sent
to the edge node mv′ . Then, the task v′ can be
started execution, < v, v′ >∈ E, tv +

∑
m∈M Zm

v tvm +∑
m∈M

∑
m′∈M cmm′avv′Zm

v Z
m′
v′ ≤ tv′ ;

� Execute tasks sequentially: If both v and v′ are offloaded
on the same edge node, each edge node may only perform
one task at a time and the task cannot be stopped during
execution, tv + tvm = tv′ ;

� Processing resource constraint: each edge node
has to satisfy the processing resource constraint,∑

v∈V Z
m
v tvmrvm ≤ C(m), ∀m ∈M .

The maximum completion time for these offloaded tasks is
represented as

T = max

{
tv +

∑
m∈M

Zm
v tvm

+
∑
m∈M

∑
m′∈M

cmm′avv′Zm
v Z

m′
v′ , v ∈ V

}
(1)

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 333

Fig. 5. Diagram of different offloading schemes.

The binary variableZm
v (∀v ∈ V,m ∈M) is utilized to tackle

the non-convex in (1) and further be rewritten as follows.

T = max

{
tv +

∑
m∈M

Zm
v tvm

+
∑
m∈M

∑
m′∈M

cmm′avv′max[Zm
v + Zm′

v′ − 1, 0]

}
(2)

Since we focus on the current task offloading, and Zm
v , Zm′

v′

only takes 0 or 1. Thus, we simplify (2) as follows.

T = max

{
tv +

∑
m∈M

Zm
v tvm +

∑
m∈M

cmm′avv′Zm
v , v ∈ V

}

(3)
Output: an optimized offloading strategy with the minimal

value of overhead function which takes both time and energy
consumption into account with the above constraints.

IV. OFFLOADING STRATEGY SELECTION

The device users have the flexibility to choose the optimal one
from multiple task execution methods based on different users’
requirements and device resource constraints. We can get the
energy consumption for approaches of the direct local execution,
the D2D-assisted local execution, the direct offload to edge cloud
execution, and the offload to edge cloud execution by D2D-
assisted, denoted as ωl

i, ω
d
ij , ωc

i , ωdc
ij , respectively. A triple <

λi, ψi, μi > is used to represent the input data size of the task,
the computational resource required to complete the task, and
the output data size of the task.

Fig. 5 depicts that four different offloading ways, including
local direct execution, D2D-assisted local execution, direct of-
floading to edge cloud execution, and offloading to edge cloud
execution via D2D.

A. Local Direct Execution

Device users can prefer to execute tasks locally in their mobile
devices to avoid excessive overhead from offloading tasks. This
is also can be viewed as a special case of task offloading.

Device i can execute its own tasks locally. Accordingly, the
energy consumption is expressed,

ωl
i = pciψi (4)

where pci is used to calculate the energy cost per CPU cycle
depending on various device types. ψi indicates the computing
resources required for completing the task.

B. D2D-Assisted Local Execution

Two paired Devices can offload tasks with each other via
D2D communication. In this way, they can share computational
resources with each other efficiently.

The D2D connection allows device i to offload its own job
to a neighbouring device j. Let Hd

it and Hd
ir indicate the D2D

transmission power and received power, respectively, of device
i, andRij denote the D2D transmission data rate between device
i and device j. Thus, the energy consumption of the two devices
for input and output data transmissions via the D2D transmission
task is

Zd1
ij =

(Hd
it +Hd

jr)λi

Rij
+

(Hd
jt +Hd

ir)μi

Rji
(5)

Besides, the energy consumption for performing the offloaded
task on device j can be represented as

Zd2
ij = pcjψi (6)

Therefore, we can obtain the cost for D2D-assisted local execu-
tion as

ωd
ij = Zd1

ij + Zd2
ij (7)

Since most mobile devices have the limited resource capacity,
it is assumed that the device can only perform at the most one
task at a time because of the physical size constraints.

C. Direct Offloading to Edge Cloud for Execution

The device can offload tasks to the edge cloud directly via
the cellular link, thereby exerting its powerful cloud computing
capabilities.

Through a cellular connection, device i may send its duties
to an edge cloud server at the edge of network. The cellular
transmission power and receiving power are Hc

it and Hc
ir, re-

spectively. The upload and download cellular data rates are
Rt

i and Rr
i , respectively. The energy consumption of the task

input and output for transmitting data between the two devices
via cellular communication. Due to the powerful computational
capacity of the edge cloud, the energy consumption of the task
execution is neglected in our work.

Zc
i =

Hc
itλi

Rt
i

+
Hc

irμi

Rr
i

(8)

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

334 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

Therefore, the cost for direct offloading to edge cloud for exe-
cution can be represented as follows,

ωc
i = Zc

i (9)

D. D2D-Assisted Offloading to Edge Cloud for Execution

A device with poor cellular connectivity can first send its
computing tasks to a nearby device with high-quality cellular
connectivity via a D2D connection. Then, this nearby device
can help move tasks that require a lot of computing to the edge
cloud.

The D2D link allows device i to communicate its own task
data to the neighbouring device j. At the same time, it gets the
result of the calculation from the adjacent device j. As a result,
the energy consumption of the input and output data transfer
through D2D communication between these two devices is as
follows.

Zd1
ij =

(Hd
it +Hd

jr)λi

Rij
+

(Hd
jt +Hd

ir)μi

Rji
(10)

The device j will then offload the received task from device
i via the cellular link to the edge cloud server at the edge of
network, and the energy consumption of the two devices for
transferring the input task and output data transmission through
D2D communication is as follows.

Zc
j =

Hc
jtλj

Rt
j

+
Hc

jrμj

Rr
j

(11)

Consequently, the cost of the D2D-assisted offloading to edge
cloud for execution is

ωdc
ij = Zd1

ij + Zc
j (12)

E. Overhead Function

We define the following overhead function U by taking into
account both time and energy consumption. Although execution
latency and energy are metrics of two different dimensions, they
can be combined into a hybrid metric by weighting them [19],
[52].

U = μ(T) + (1− μ)(ω) (13)

whereμ(0 ≤ μ ≤ 1) denotes the weight of users’ task execution
time, and (1− μ) denotes the weight of energy consumption.
Inspired by the existing work [53], we empirically divide the μ
value into three cases:

1) if we pay more attention to execution time, then μ is set
to 0.05;

2) if we pay more attention to energy consumption, then μ is
set to 0.9;

3) if we balance execution time and energy consumption,
then μ is set to 0.5.

F. Socially-Aware Dependent Tasks Offloading Based on
Bipartite Graph Matching

Bipartite graph, a special model in graph theory, is utilized to
model the allocation between tasks and devices. LetG = (V,E)
be an undirected graph, and a graph G is said to be a bipartite

graph if the vertexV can be partitioned into two mutually disjoint
subsets (A,B) and the two vertices i and j associated with each
edge (i, j) in the graph belong to these two different sets of
vertices (i ∈ A, j ∈ B), respectively. In short, it means that the
vertex setV can be partitioned into two mutually disjoint subsets,
and the two vertices dependent on each edge in the graph belong
to these two mutually disjoint subsets, and the vertices within the
two subsets are not adjacent. Based on the definition of bipartite
graph and the features of our problem, it is found that it is very
convenient and effective to address the dependent task offloading
by using the bipartite graph matching technique.

Our proposed strategy works as follows. First, the social graph
of devices (Fig. 7(a)), the D2D connection graph (Fig. 7(b)), and
the edge cloud with virtual machines VM 3 and VM 4 (Fig. 7(c))
are prepared, respectively. Then, a socially-aware collaborative
task offloading can be formulated as bipartite graph matching
problem (as shown in Fig. 6). And an illustration of the D2D-
assisted edge computing offloading can be seen in Fig. 8. Clearly,
it consists of physical layer and social layer. Mobile devices,
in particular, contain a large number of D2D connections to
ensure device computation and cellular communication resource
sharing in the physical layer. Within the social layer, device users
have social ties with one another in order to achieve effective
and trustworthy collaboration.

By incorporating the social relationships and D2D communi-
cation relationships into the process of device computation and
network resources sharing, this paper presents a socially-aware
collaborative task offloading strategy based on bipartite graph
matching. Once we obtain the energy consumption ω, then it
can be regarded as a weight of each edge in the bipartite graph.
Eventually, the optimal offloading strategy can be selected based
on the weight.

In this paper, we assume that the number of executed tasks at
the edge cloud is determined, then Fig. 6 can be simplified as
Fig. 9(a).

When the task is not executed on the edge cloud server, there
are two execution modes as shown in Fig. 9(a): direct local
execution and D2D-assisted local execution, where the dotted
line represents the connection which is obtained through social
relationships. As shown in Fig. 9(a), Task 3 can be directly
offloaded to Device 3, while Task 4 can be directly offloaded
to Device 4. As can be seen from Fig. 7(a), there exists a social
relationship between Device 1 and Task 3, so Task 3 can be
executed locally by virtue of D2D communication with Device
1. Similarly, the Task 4 can be executed locally by virtue of D2D
communication with Device 2.

When the task are offloaded to the edge cloud for execution,
there exist two offloading strategies as shown in Fig. 9(b). That
is to say, the tasks can be directly offloaded to the edge cloud for
execution or offloaded to the edge cloud for execution via D2D
communication. As can be seen from Fig. 9(b), task 3 can be
directly offloaded to VM 3 and task 4 can be directly offloaded
to VM 4 with the first offloading strategy. By utilizing the social
relationships and D2D communication between devices, task 3
can be offloaded to VM 3 through device 1 and task 4 can be
offloaded to VM 4 through device 2, that is the second offloading
strategy.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 335

Fig. 6. Socially-aware collaborative task offloading based on bipartite graph matching.

Fig. 7. Prerequisites for bipartite graph matching.

Fig. 8. An illustration of the D2D-assisted edge computing networks.

First of all, we define relevant variables and characteriza-
tion formulas used in our algorithm. After that, we impose
time constraints on task offloading to satisfy the dependencies
between tasks (Line 2). Then, Lines 3-6 calculate the energy
consumption ω when executing task v locally; Lines 7-11 are
in charge of evaluating the overhead U when executing task v
locally. Similarly, when the task v is executed in the edge cloud,
the energy consumption ω and the overhead U can be obtained
(Lines 13-21); Then, the minimum value of U can be selected
by comparing the overhead function U (Lines 22-27); Finally,
an optimized combination of offloading strategies for tasks, is

Fig. 9. Offloading strategies for the tasks executed locally and in the edge.

achieved according to the minimum value of U (Line 28). Note
that, LOC indicates the tasks are execute locally; LOC-D2D
refers to the tasks execution locally via D2D; EC denotes the
tasks execution on the edge clouds and the EC-D2D represents
the tasks execution on the edge clouds via D2D.

Theorem 4.1. Socially-aware Dependent Tasks Offloading
(SDTO) algorithm is minimum weight matching under complete
matching.

Proof. In a bipartite graph, there are two vertices: left vertex
A and right vertexB. Now for each set of left connectionsAi and
right connections Bj have weights U [i][j] to find the smallest
match and minimize the sum of all U [i][j] in the match. �

Theorem 4.2. The task offloading strategy generated by the
SDTO algorithm is the best for the current state.

Proof. In the problem proposed of this paper, all tasks are
required to have corresponding task offloading strategies, and
minimize the task latency and energy consumption. This means
that the matches in the bipartite graph we build must be com-
plete matches. The task offloading strategy obtained by SDTO

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

336 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

Algorithm 1: Socially-Aware Dependent Tasks Offloading
Algorithm.

Input:
The property of tasks;
The property of computing devices
Output:
An optimized combination of offloading strategies for tasks
En;

1: Define variables and characterization formula;
2: Characterize the dependence between tasks

tv +
∑

m∈M Zm
v tvm +∑

m∈M
∑

m′∈M cmm′avv′Zm
v Z

m′
v′ ≤ tv′

3: for (int i = 0; i ≤ n; i++) begin
4: Energy consumption

ω = ((n− i) ∗ executionω + i ∗ offloadingω);
5: list.add(ω);
6: end
7: if (ω list ! = null) begin
8: for (int i = 0; i < naList.size(); i++) begin
9: U : u = offlo.computerU(T, naList.get(i));

10: naListU.add(u);
11: end
12: end
13: for (int i = 0; i ≤ n; i++) begin
14: ω = ((n− i)∗ the ω of EC +i∗ the ω of EC-D2D);
15: list.add(ω);
16: end
17: if (ω list != null) begin
18: for (int i = 0; i < naList.size(); i++) begin
19: u = offlo.computerU(T, naList.get(i));
20: clListU.add(u);
21: end
22: begin
23: if(the U of LOC list naListU != null)begin
24: Minimum U for LOC: minUNative

= Collections.min(naListU);
25: begin
26: if (the U of EC list clListU != null)begin
27: Minimum U for EC: minU

= Collections.min(clListU);
28: Return En;

method according to Theorem 4.1 complete matches the mini-
mum weight of the edge. Therefore, the task offloading strategy
obtained by SDTO is the best decision in the current state. �

Due to the maximum number of edges in a bipartite graph
is N2/2, the complexity of the Hungarian algorithm is classi-
cal O(N3) [54], hence, the complexity of the task offloading
algorithm in this paper isO(N3) in each time interval. Notably,
cubic complexity provides a theoretical upper bound on compu-
tational complexity. The total number of iterations depends on
the number of vertices that need to be matched and the number
of edges in the graph, that is to say, the number of tasks that need
to be offloaded and the number of servers executing the tasks.
In practice, the number of tasks that need to be offloaded and

the number of mobile devices that provide assistance is usually
limited in a time interval. In addition, bipartite graphs are not
fully connected under normal conditions, therefore, we believe
that the computational complexity of the algorithm proposed in
this paper should be acceptable in practice.

G. An Illustrative Example

In order to better understand the algorithm proposed in this
paper, an example will be described in this subsection. We
assume that the set of tasks V = {v1, v2, v3, v4, v5} and the
number of tasks n = |V | = 5, where there exists a dependency
between tasks v1 and v2. In our simulation, there are 6 different
offloading cases as follows. Case 1© 5 tasks are executed locally;
Case 2© 5 task are executed on edge cloud; Case 3© 1 task is
executed on edge cloud and 4 tasks are executed locally; Case
4© 2 tasks are executed on edge cloud and 3 tasks are executed

locally; Case 5© 3 tasks are executed on edge cloud and 2 tasks
are executed locally; Case 6© 4 tasks are executed on edge cloud
and 1 task is executed locally.

1© Fig. 10(a) shows the overhead of 6 different offloading strate-
gies (i.e., Loc(5), Loc−D2D(5), Loc(i) + Loc−D2D(j)
(here i+ j = 5)) under Case 1©.1

Obviously, we can see that the offloading strategy Loc(5) is
the best one due to its smallest value of overheadU . Therefore,
we can execute 5 tasks on the devices locally.

2© Fig. 10(b) depicts the overhead of 6 different offload-
ing strategies (i.e., EC(5), EC −D2D(5), EC(i) + EC −
D2D(j) (here i+ j = 5)) under Case 2©.
Similarly, it is easily to find that the offloading strategyEC(5)
is the best one due to its smallest value of overhead U .
Therefore, we can offload 5 tasks to edge clouds for execution.

3©The large energy consumption of local execution in Fig. 10(c)
results in a large difference between the values of various
execution methods and further leads a tough observation and
analysis for our results. To make Fig. 10(c) more intuitive
for showing the results, the U value is taken as a logarithm
operation, i.e, log(U).
We find that the offloading strategyEC(1)+Loc(4) is the best
one due to its smallest value of overhead U . That is to say, we
suggest offloading 1 task to edge cloud and 4 tasks to devices
for execution.

4© Similar with Fig. 10(c), we also perform a logarithmic
operation on the value of U on Fig. 10(d).
In Fig. 10(d), the offloading strategy EC(2)+Loc(3) is the
best one due to its smallest value of overhead U . Hence, we
suggest offloading 2 tasks to edge cloud and 3 tasks to devices
for execution.

5© For a better readability of our simulation results, we also
perform a logarithmic operation on the value of U on
Fig. 10(e). Fig. 10(e) illustrates that the offloading strategy
EC(3)+Loc(2) is the best one due to its smallest value of
overhead U . Therefore, we suggest offloading 3 tasks to edge
cloud and 2 tasks to devices for execution.

1.The numbers in parentheses indicate the number of tasks.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 337

Fig. 10. Overhead of different offloading strategies under different cases.

Fig. 11. The overhead U under different task offloading strategies.

6© Similar with Fig. 10(c), we also perform a logarithmic
operation on the value of U on Fig. 10(f). Fig. 10(f) shows
that the offloading strategyEC(4)+Loc(1) is the best one due
to its smallest value of overhead U . Therefore, we suggest
offloading 4 tasks to edge cloud and 1 task to devices for
execution.

Fig. 11 shows the summary of the different U -values for the
tasks that are offloaded for execution on the local devices and

edge cloud. It demonstrates that the U -values corresponding
to the different offloading strategies (all 5 tasks are executed
locally/on edge clouds, 4 out of 5 tasks are executed locally/on
edge clouds, 3 out of 5 tasks are executed locally/on edge clouds,
2 out of 5 tasks are executed locally/on edge clouds, and 1 out
of 5 tasks are executed locally/on edge clouds).

The summary of U -values executed locally and the summary
of U -values executed on the edge cloud are complementary. For
example, when 4 out of 5 tasks are executed locally, there is only
1 task executed on the edge cloud. Then, theU -value in this case
is the sum of the corresponding U -values of the two graphs. It
can be seen that with a total number of 5 tasks, the U -value can
be minimized when all 5 tasks are offloaded to the edge cloud
for execution. The corresponding offloading strategy is optimal.

V. SIMULATION AND PERFORMANCE EVALUATION

In the simulation, we implement our proposed algorithm using
Java programming language to perform all the simulations on
a machine with Inter(R) Core (TM) i7-6700HQ @ 2.60 GHz
2.59 GHz CPU and 8 GB RAM running Windows 10 system.
We verify the calculation of the overhead function U under a
specific offloading case, and the simulation results demonstrate
that our proposed strategy is more effective and sustainable.

A. Experimental Settings

We assume that the set of tasks V = {v1, v2, . . . , vn} and
the number of tasks n = |V | = {100, 300, 500}. The ratio of
communication delay to processing delay is uniformly random-
ized in the range of (0.1,10). In other words, the communication
delay of data transfer from task v to task v′ may be produced
for each < v, v′ >∈ E by multiplying task v’s processing time
by a random integer in (0.1,10). Furthermore, the necessary

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

338 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

Fig. 12. Robustness Evaluation of Our Approach when n = 5.

Fig. 13. Robustness evaluation of our approach varying µ and n.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 339

TABLE III
PARAMETERS INITIALIZATION

computational resources tvm, rvm on edge node m for each
task v are in the range of (1,10).

Suppose the start time tv = 1, the execution time tvm = 2,
the number of CPU cycles per second rvm = 2, and the data
transmission delay is represented as follows,

avv′cmm′ = tvm × 0.1 = 2× 0.1 = 0.2 (14)

The maximum completion time of the offloaded tasks can be
estimated as follows,

T = max

{
tv +

∑
m∈M

Zm
v tvm +

∑
m∈M

cmm′avv′Zm
v , v ∈ V

}

= max

{
1 + 2

∑
m∈M

Zm
v + 0.2

∑
m∈M

Zm
v , v ∈ V

}
(15)

We initialize the parameters used in our simulation as shown
in Table III. In this paper, from the multi-objectives optimization
point of view, we assume that all parameter values are not
random. Therefore the difference in results of this paper is not
due to the randomness of the data.

B. Simulation Results and Analysis

This section presents the experimental results of our simula-
tion and relevant analysis.

To better evaluate the performance of our proposed offloading
strategies, we utilize the following comparison approaches for
further performance evaluation.
� Random: This method is to decide an offloading strategy

according to the random selected value ofU about different
cases.

� Average: Similar with Random approach, this method de-
cides an offloading strategy according to the average value
of U of about different cases.

� D2D: The key idea of this approach is to select the way
of D2D offloading as the task offloading strategy [38],
including execution locally by virtue of D2D offloading,
and execution on the edge clouds for D2D offloading.

� CDOM: The coordinate descent offloading method
(CDOM) finds the optimal value through multiple itera-
tions, and only changes the offloading strategy of one user
each time in one iteration [30].

� Ours: The approach proposed in this paper. The core idea
is to optimize the offloading strategy by considering the

TABLE IV
THE RESULT OF THE FIG. 13(F)

minimal value of U among different cases. Therefore, that
is a global optimization solution for independent tasks
offloading in MEC.

In order to evaluate the robustness of our approach, the fol-
lowing three groups of comparison experiments are conducted
when μ = 0.05, μ = 0.5, and μ = 0.9. That is to say, we set
different weights μ for network latency and energy consump-
tion, then have a comprehensive observation on performance of
comparison approaches.

Fig. 12(a), (b), and (c) simulate the variation of the over-
head for different approaches obtained when the total number
of tasks is 5, as the number of tasks offloaded to the edge
cloud increases, and is compared at different μ values. The
results show that the value of the overhead obtained by our
approach is smaller than the other four approaches, in which
our approach still outperforms the others for different values of
μ.

Since it is difficult to generalize the results obtained with a
small number of tasks, we adjusted the total number of tasks
to address this issue. Without loss of generality, we set the
total number of tasks to 100, 300, and 500 under the same μ
value respectively, in order to make the obtained results more
convincing.

Fig. 13(a), (b), and (c) demonstrate that the variation of
the different overhead functions corresponding to the number
of tasks offloaded on the edge cloud for different offloading
when the total number of tasks is 100. It can be seen that the
comparison of overhead functions at different μ values is always
better for our method than the other four approaches.

Robustness Evaluation: Fig. 13(d)–(i) show the robustness
evaluation of our approach. It reports that our approach can
achieve the minimal value ofU compared with other approaches
under different weights μ and the number of tasks 300 and 500.

Note that, as shown in Figs. 12(c), 13(f), and 13(i), although
the difference among them is not significant, take the Table IV
as an example we can still conclude that our approach is superior
to the others in terms of U . Because the value of μ at this time
is taken as 0.9, which means that the value of the influence
of T on the overhead function accounts for 90% at this time.
According to (3), the factor affecting T is decided by the number
of tasks offloaded to the edge cloud. As a result, the difference
in overhead function values achieved for a given total number
of tasks versus the number of jobs offloaded to the edge cloud
during simulation tests is rather modest.

Sensitivity Analysis: We change the parameter values that
can be randomly set in this paper, and conduct 100 times of

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

340 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

TABLE V
CONFIDENCE INTERVAL ESTIMATION

Fig. 14. Sensitivity analysis results.

experiments under 12 different settings with variousμvalues and
task number. Furthermore, we estimate the 95% confidence in-
terval of the experimental results, i.e.,(U − 1.96∗σ√

L
, U + 1.96∗σ√

L
),

where σ andU denote the Standard Deviation and mean value of
overheadU and the number of experimentsL=100. Table V and
Fig. 14 present the confidence interval and sensitivity analysis
results. On the premise of ensuring the confidence level of
95%, the lengths of the confidence interval of the overhead U
under 12 different experimental configurations are quite short,
which is conducive to making the appropriate dependency tasks
offloading decision, which fully proves that the experimental
results obtained by our method are not due to the randomness
of the data.

VI. CONCLUSION

In this paper, we exploit the social relationships between mo-
bile devices to enable trusted transmission between dependent
tasks and other tasks. Our proposed socially-aware dependent
task offloading strategies in mobile edge computing provide
more flexible options for task offloading, including local ex-
ecution on the devices, execution locally by virtue of D2D
offloading, execution on the edge clouds directly and execution
on the edge clouds by means of D2D offloading, for achieving the
efficient offloading of dependent tasks. Technically, a bipartite
graph matching based offloading approach for dependent tasks
is presented. We consider both network latency and energy
consumption. Therefore, the final adopted offloading strategy
demonstrates lower overhead and computational cost, as well as
better quality of experience than considering only one of the fac-
tors. Extensive simulation results demonstrate that the offloading
of dependent tasks with our approach is less expensive than the

approaches considering time or energy consumption only. In
future work, we will study the problem of offloading dependent
tasks under heterogeneous computing resources using graph
neural methods. Moreover, we try to do some experiments in
real scenarios as much as possible.

ACKNOWLEDGMENTS

This work reflects only the authors’ view and the EU Com-
mission is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5G: The next
generation of mobile communication,” Phys. Commun., vol. 18, pp. 64–84,
2016.

[2] J. G. Andrews et al., “What will 5G be?,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[3] R. Anwit, P. K. Jana, and A. Tomar, “Sustainable and optimized data col-
lection via mobile edge computing for disjoint wireless sensor networks,”
IEEE Trans. Sustain. Comput., vol. 7, no. 2, pp. 471–484, Second Quarter
2022.

[4] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-managed
service placement for mobile edge computing: An online learning ap-
proach,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1468–1476.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[6] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource alloca-
tion for computation and communication in mobile cloud with computing
access point,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[7] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surv. Tut., vol. 19, no. 3,
pp. 1628–1656, Third Quarter 2017.

[8] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[10] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling and
transmit power allocation for mobile-edge computing systems,” in Proc.
IEEE Wireless Commun. Netw. Conf., 2017, pp. 1–6.

[11] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. IEEE 35th Annu. Int. Conf. Comput.
Commun., 2016, pp. 1–9.

[12] S. Sundar and B. Liang, “Offloading dependent tasks with communication
delay and deadline constraint,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 37–45.

[13] J. Zhu, X. Li, R. Ruiz, and X. Xu, “Scheduling stochastic multi-stage
jobs to elastic hybrid cloud resources,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 6, pp. 1401–1415, Jun. 2018.

[14] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, privacy, and fairness in
fog-based vehicular crowdsensing,” IEEE Commun. Mag., vol. 55, no. 6,
pp. 146–152, Jun. 2017.

[15] E. D’Andrea, P. Ducange, B. Lazzerini, and F. Marcelloni, “Real-time
detection of traffic from Twitter stream analysis,” IEEE Trans. Intell.
Transp. Syst., vol. 16, no. 4, pp. 2269–2283, Aug. 2015.

[16] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Serv., 2010,
pp. 49–62.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SOCIALLY-AWARE DEPENDENT TASKS OFFLOADING STRATEGY IN MOBILE EDGE COMPUTING 341

[17] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, “Socially-motivated
cooperative mobile edge computing,” IEEE Netw., vol. 32, no. 6,
pp. 177–183, Nov./Dec. 2018.

[18] X. Pei, W. Duan, M. Wen, Y.-C. Wu, H. Yu, and V. Monteiro, “Socially-
aware joint resource allocation and computation offloading in noma-aided
energy harvesting massive IoT,” IEEE Internet Things J., vol. 8, no. 7,
pp. 5240–5249, Apr. 2021.

[19] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[20] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[21] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, and M. Huang, “TCDA:
Truthful combinatorial double auctions for mobile edge computing in
industrial Internet of Things,” IEEE Trans. Mobile Comput., vol. 21, no. 11,
pp. 4125–4138, Nov. 2021.

[22] J. Bright, “The success of multi-access edge computing rests on cross-
industry cooperation and 5G,” 3G Mobile, vol. 13, pp. 2–5, 2017.

[23] L. Zhao, K. Yang, Z. Tan, X. Li, S. Sharma, and Z. Liu, “A novel cost op-
timization strategy for SDN-enabled UAV-assisted vehicular computation
offloading,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3664–3674,
Jun. 2021.

[24] F. Liu, P. Shu, and J. C. Lui, “AppATP: An energy conserving adap-
tive mobile-cloud transmission protocol,” IEEE Trans. Comput., vol. 64,
no. 11, pp. 3051–3063, Nov. 2015.

[25] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain
deployment with efficient resource reuse at network edge,” in Proc. IEEE
Conf. Comput. Commun., 2020, pp. 267–276.

[26] A. Yadav, P. K. Jana, S. Tiwari, and A. Gaur, “Clustering-based energy effi-
cient task offloading for sustainable fog computing,” IEEE Trans. Sustain.
Comput., early access, Jun. 27, 2022, doi: 10.1109/TSUSC.2022.3186585.

[27] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation of-
floading for mobile-edge computing with energy harvesting devices,”
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605,
Dec. 2016.

[28] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive D2D
collaboration for energy-efficient mobile edge computing,” IEEE Wireless
Commun., vol. 24, no. 4, pp. 64–71, Aug. 2017.

[29] X. Yi, L. Pan, Y. Jin, F. Liu, and M. Chen, “Edirect: Energy-efficient D2D-
assisted relaying framework for cellular signaling reduction,” IEEE/ACM
Trans. Netw., vol. 28, no. 2, pp. 860–873, Apr. 2020.

[30] S. Yang, “A joint optimization scheme for task offloading and resource
allocation based on edge computing in 5G communication networks,”
Comput. Commun., vol. 160, pp. 759–768, 2020.

[31] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12 313–12 325, Dec. 2018.

[32] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation offload-
ing in green mobile edge cloud computing,” IEEE Trans. Serv. Comput.,
vol. 12, no. 5, pp. 726–738, Sep./Oct. 2019.

[33] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task offload-
ing with network function requirements in a mobile edge-cloud net-
work,” IEEE Trans. Mobile Comput., vol. 18, no. 11, pp. 2672–2685,
Nov. 2018.

[34] X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid computation
offloading with cloud and fog computing,” IEEE Access, vol. 5, pp. 21 355–
21 367, 2017.

[35] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[36] L. Zhao, T. Zheng, M. Lin, A. Hawbani, and J. Shang, “A novel influence
maximization-based dynamic forwarding node selection scheme in SD-
VNs,” in Proc. IEEE Int. Conf. Parallel Distrib. Process. Appl. Big Data
Cloud Comput. Sustain. Comput. Commun. Social Comput. Netw., 2020,
pp. 674–682.

[37] S. Yu, B. Dab, Z. Movahedi, R. Langar, and L. Wang, “A socially-aware hy-
brid computation offloading framework for multi-access edge computing,”
IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1247–1259, Jun. 2020.

[38] N. Fan, X. Wang, D. Wang, Y. Lan, and J. Hou, “A collaborative task
offloading scheme in D2D-assisted fog computing networks,” in Proc.
IEEE Wireless Commun. Netw. Conf., 2020, pp. 1–6.

[39] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading dependent
tasks in mobile edge computing with service caching,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 1997–2006.

[40] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 207–215.

[41] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1279–1287.

[42] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 514–522.

[43] J. Lin, R. Chai, M. Chen, and Q. Chen, “Task execution cost minimization-
based joint computation offloading and resource allocation for cellular
D2D systems,” in Proc. IEEE 29th Annu. Int. Symp. Pers. Indoor Mobile
Radio Commun., 2018, pp. 1–5.

[44] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,”
IEEE Access, vol. 5, pp. 11 255–11 268, 2017.

[45] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based
offloading game in edge computing,” IEEE Trans. Comput., vol. 69, no. 6,
pp. 883–893, Jun. 2020.

[46] M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading
in mobile edge computing systems,” IEEE Trans. Mobile Comput., vol. 21,
no. 6, pp. 1985–1997, Jun. 2020.

[47] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[48] J. Zou, T. Hao, C. Yu, and H. Jin, “A3C-DO: A regional resource schedul-
ing framework based on deep reinforcement learning in edge scenario,”
IEEE Trans. Comput., vol. 70, no. 2, pp. 228–239, Feb. 2020.

[49] Y. Shang, J. Li, and X. Wu, “Dag-based task scheduling in mobile
edge computing,” in Proc. 7th Int. Conf. Inf. Sci. Control Eng., 2020,
pp. 426–431.

[50] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multi-
task offloading strategy optimization based on directed acyclic graphs for
edge computing,” IEEE Internet Things J., vol. 9, no. 12, pp. 9367–9378,
Jun. 2022.

[51] X. Lv, H. Du, and Q. Ye, “TBTOA: A dag-based task offloading scheme
for mobile edge computing,” in Proc. IEEE Int. Conf. Commun., 2022,
pp. 4607–4612.

[52] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2018.

[53] Q. Tang, H. Lyu, G. Han, J. Wang, and K. Wang, “Partial offloading
strategy for mobile edge computing considering mixed overhead of time
and energy,” Neural Comput. Appl., vol. 32, no. 19, pp. 15 383–15 397,
2020.

[54] J. Xie, Y. Jia, Z. Chen, Z. Nan, and L. Liang, “D2D computation offloading
optimization for precedence-constrained tasks in information-centric IoT,”
IEEE Access, vol. 7, pp. 94 888–94 898, 2019.

Yanqi Gong received the BSc degree in software
engineering from Ningxia University, China, in 2020.
She is currently working toward the MSc degree with
the School of Computer Science, Shaanxi Normal
University, China. Her current research interests in-
clude mobile edge computing, cloud computing, and
Big Data.

Fei Hao received the PhD degree in computer sci-
ence and engineering from Soonchunhyang Univer-
sity, South Korea, in 2016. Since 2016, he has been
with Shaanxi Normal University, Xi’an, China, where
he is an associate professor. From 2020 to 2022,
he was a Marie Sklodowska-Curie Fellow with the
University of Exeter, Exeter, United Kingdom. His
research interests include social computing, ubiqui-
tous computing, big data analytics, knowledge graph,
and edge intelligence.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSUSC.2022.3186585

342 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

Liang Wang (Member, IEEE) received the BS de-
gree in telecommunications engineering and the PhD
degree in communication and information systems
from Xidian University, China, in 2009 and 2015,
respectively. He is currently an associate professor
with the School of Computer Science, Shaanxi Nor-
mal University, China. From 2018 to 2019, he was
a Visiting Scholar with the School of Electrical and
Computer Engineering, Georgia Institute of Technol-
ogy, USA. His research interests focus on Internet of
Things, mobile edge computing, and applications of

reinforcement learning and robust design in wireless communications networks.

Liang Zhao (Member, IEEE) received the PhD
degree from the School of Computing, Edinburgh
Napier University, in 2011. He is a professor with
Shenyang Aerospace University, China. Before join-
ing Shenyang Aerospace University, he worked as as-
sociate senior Researcher in Hitachi (China) Research
and Development Corporation from 2012 to 2014.
He is also a JSPS invitational Fellow (2023). He was
listed as Top 2% of scientists in the world by Stand-
ford University (2022). His research interests include
ITS, VANET, WMN and SDN. He has published more

than 150 articles. He served as the Chair of several international conferences
and workshops, including 2022 IEEE BigDataSE (Steering Co-Chair), 2021
IEEE TrustCom (Program Co-Chair), 2019 IEEE IUCC (Program Co-Chair),
and 2018-2022 NGDN workshop (founder). He is associate editor of Frontiers
in Communications and Networking and Journal of Circuits Systems and Com-
puters. He is/has been a guest editor of IEEE Transactions on Network Science
and Engineering, Springer Journal of Computing, etc. He was the recipient of
the best/outstanding paper awards, 2015 IEEE IUCC, 2020 IEEE ISPA, 2022
IEEE EUC, and 2013 ACM MoMM.

Geyong Min (Member, IEEE) received the PhD de-
gree in computing science from the University of
Glasgow, United Kingdom, in 2003, and the BSc
degree in computer science from Huazhong Uni-
versity of Science and Technology, China, in 1995.
He is a professor of High Performance Computing
and Networking in the Department of Computer Sci-
ence within the College of Engineering, Mathematics
and Physical Sciences with the University of Exeter,
United Kingdom. His research interests include Com-
puter Networks, Wireless Communications, Parallel

and Distributed Computing, Ubiquitous Computing, Multimedia Systems, Mod-
elling, and Performance Engineering.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on September 15,2023 at 07:59:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

