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Traffic Prediction Based on Formal
Concept-Enhanced Federated Graph Learning

Kai Wu, Fei Hao , Ruoxia Yao, Jinhai Li , Geyong Min , Member, IEEE, and Sergei O. Kuznetsov

Abstract— Aiming to improve the efficiency of urban traffic
management, previous studies have achieved considerable traffic
prediction accuracy. For example, methods based on time series
analysis perform well in short-term traffic prediction, and
neural networks show strong capabilities in processing complex
nonlinear relationships within traffic data. However, previous
studies also have the following two limitations: 1) a large amount
of complex traffic data will increase the complexity of the
model during training and further reduce the accuracy of the
training results; 2) the large-scale distribution of traffic data
leads to incomplete model training and data security issues.
To address these issues, we propose a Formal Concept-enhanced
Federated Graph Convolutional Network (FC-FedGCN), which
adopts formal concept analysis to fully mine graph data and
improve the training accuracy of the GCNs model. Under
federated learning, the GCNs model can be trained independently
on different clients, and the local model is optimized by sharing
model parameters. Coupled with the premise of protecting data
privacy, the integrity of the data is guaranteed and the training
accuracy of the GCNs model is improved. We compare our
model with various baseline models based on the PEMS datasets,
and the results demonstrate that FC-FedGCN has significant
advantages in traffic prediction, outperforming the comparison
methods in multiple indicators.

Index Terms— Formal concept analysis, federated graph
learning, traffic prediction.

I. INTRODUCTION

WITH the acceleration of urbanization, traffic prediction
has become a key issue in urban management

and intelligent transportation systems. Traffic data includes
information such as vehicle flow, speed, density, etc., and
is highly dependent on time and space [1]. Usually, traffic
data sets are abstracted into graph data with intersections as
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nodes and roads as edges [2], for data analysis and prediction.
Accurate traffic flow prediction can effectively alleviate traffic
congestion, optimize traffic management and improve travel
efficiency. However, traditional prediction methods are difficult
to fully exploit the spatio-temporal relationships in traffic
data [1], [2].

For example, traffic forecast and time series analysis based
on historical averages usually focus on pattern recognition in
the time dimension [3]. These methods may be effective in
dealing with time dependence, but they often ignore the spatial
relationships and interactions between different locations (such
as intersections and road sections) in traffic data [4]. Since
traffic flow is not only affected by time changes, but also
by complex interactions and dependencies between different
locations in the transportation network, it is difficult for
traditional methods to fully capture and utilize these spatio-
temporal relationships, resulting in limited prediction accuracy
and effectiveness [5]. This makes them perform poorly when
dealing with complex traffic pattern changes and spatial
heterogeneity, and cannot fully exploit the potential value in
traffic data.

Graph Convolutional Networks (GCNs) are deep learning
methods that effectively process graph-structured data and
can capture the complex relationships between different nodes
(such as intersections and road sections) in the transportation
networks [6], [7]. However, there are two main problems
when GCNs are applied to traffic data: 1) GCNs analyze and
learn the characteristics of traffic data, but a large amount of
complex data will increase the complexity of the model during
training and reduce the accuracy of the training results [8],
[9]; 2) GCNs usually rely on a centralized data collection
and processing model, which will lead to data privacy and
security issues and the large distribution and scale of traffic
data, centralized processing is difficult to efficiently handle
such a huge amount of data [10], [11].

Formal Concept Analysis (FCA), as a powerful tool for
data analysis and rule extraction for information systems, can
clearly express the hierarchical relationship between concepts,
as well as the relationship between objects and attributes [12],
thereby discovering the structures and relations in the data,
solving the problems of high complexity and low result
accuracy in GCNs model training effectively. This theory is
based on mathematics and uses a formal context to represent
the concepts, attributes, and relationships that make up the
ontology [13], [14]. Then according to the formal context, its
corresponding concept lattice is constructed to clearly express
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the structure of the ontology [14]. Among these structures,
we can easily explore the maximal clique structure to update
the feature representation of nodes in the original graph data,
thereby mining the connections between different intersections
in the traffic network [15]. The spatial relationship can
achieve higher model accuracy in model training. In traffic
prediction, GCNs based methods often encounter the problem
of insufficient feature expression due to the complexity and
diversity of data. Especially in large-scale traffic networks,
traditional feature extraction methods are difficult to fully
capture the intrinsic structure of traffic data. The introduction
of FCA can not only extract the hierarchical relationship and
structure between concepts from the data, but also effectively
identify the implicit associations between nodes, which is very
critical for dealing with the potential complex topological
relationships in traffic networks.

Federated Learning (FL) is an emerging distributed machine
learning technology that allows models to be trained on
multiple distributed devices without the need to centralize data
on a central server [16], thereby improving data privacy and
security, to solve the data privacy and security issues during
GCNs model training. When processing traffic data sets,
federated learning can effectively integrate data characteristics
from different regions and build a global model with
more generalization capabilities [17], [18]. This helps with
differences in traffic patterns in different regions and improves
the accuracy and robustness of predictions. In addition, the
applications of FCA in the framework of FL further alleviates
the privacy issues in cross-regional data fusion. By extracting
the concept lattice structure locally and sharing parameters
instead of raw data, we can improve the generalization
performance of the model while ensuring data privacy.
Therefore, the integration of FCA in FL not only enriches the
structural expression ability of the data, but also alleviates the
risk of data leakage through the parameter sharing mechanism,
so that the traffic flow prediction model can better handle the
heterogeneity and spatio-temporal correlation in traffic data
while protecting privacy.

Therefore, we propose a traffic prediction method based
on Formal Concept-enhanced Federated Graph Learning.
To address the above shortcomings, we combine GCN
with FCA and FL. Through this method, it is possible
to make full use of the spatio-temporal characteristics of
traffic data while protecting data privacy, while solving the
challenges of traditional methods in data privacy protection
and cross-regional data fusion, thereby significantly improving
the effect of traffic flow prediction.

The major contributions of this paper are summarized as
follows:
• In order to better extract spatial information from traffic

data, we propose a novel Formal Concept-enhanced
Graph Convolutional Network (FC-GCN) model. This
integration enhances the training accuracy of the
models by leveraging FCA to distill structural features
from traffic data and subsequently refining the feature
representation of the traffic data.

• We create the FC-FedGCN model, a groundbreaking
federated graph learning framework that mitigates the risk

of privacy breaches during the GCN training for traffic
data from distinct regions. This model also effectively
addresses the challenges of data dispersion and privacy
preservation when predicting traffic flows across different
areas.

• We assess the performance of our method using
the datasets from the PEMS. The outcomes indicate
that our method achieves a reduction in forecasting
error by roughly 0.57% to 8.27% when compared to
various benchmark techniques. This suggests that the
FC-FedGCN model outperforms others in the domain of
traffic flow prediction.

The remainder of this article is organized as follows.
Section II introduces the related research work of traffic
prediction and Federated Graph Learning. The key formulas
and examples are used to explain the preliminary knowledge
of FCA, GCN and FL in Section III. To better introduce
our framework for traffic prediction, we elaborate the overall
framework of FC-FedGCN in Section IV. Section V describes
the datasets used for experimentation, with the subsequent
analysis of the experimental outcomes. Finally, a summary
and outlook for future work were given in Section VI.

II. RELATED WORKS

This section focuses on the research of traffic prediction and
FL in graph learning.

A. Traffic Prediction

Statistical and traditional machine learning models are
prominent data-driven techniques for predicting traffic.

In the realm of time-series analysis, the autoregressive
integrated moving average (ARIMA) model and its extensions
are well-established approaches rooted in classical statistical
methods. These have been extensively utilized for traffic
forecasting tasks, as evidenced by [19], [20], and [21].
However, these models are typically tailored for smaller
datasets and often fall short when faced with intricate and
fluctuating time series data.

Deep learning models leverage a far more extensive array of
features and intricate architectures compared to their classical
counterparts, which is why GCNs are employed for modeling
non-Euclidean spatial structures. This approach aligns more
closely with the inherent structure of traffic road networks.
Liu et al. [22] proposed a spatio-temporal dual adaptive
graph convolutional network model for spatio-temporal traffic
prediction. The model uses a dual adaptive adjacency matrix
composed of static and dynamic graph structure learning
matrices to solve the problem of inaccurate predictions caused
by fluctuations in the relationship between road sections
due to factors such as traffic accidents, weather conditions
and other events. Wang et al. [23] proposes a method to
perform multi-dimensional cross-attention and spatio-temporal
graph convolution. This method fully considers the cross
information and constructs an attention cross view between
each pair of dimensions in the channel, temporal and spatial
domains to model the cross-dimensional dependencies of
traffic data. Bao et al. [24] proposes a novel approach based on
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TABLE I
SUMMARY OF RELATED WORKS

prior knowledge enhanced time-varying graph convolutional
network to describe dynamic and long-term spatio-temporal
correlations. In addition, the papers [25], [26], [27], [28], [29]
has improved the GCN model in terms of time and space.

B. Federated Learning

Federated learning is a distributed learning framework that
plays an important role in traffic flow prediction, graph
learning, and other aspects.

In terms of traffic flow prediction, [30] proposed a
federated learning algorithm for network traffic prediction
(Fed-NTP) based on the long short-term memory (LSTM)
algorithm, trained the model locally, and implemented the
LSTM algorithm in a decentralized manner by using the
federated learning algorithm on the vehicular ad hoc network
(VANET) dataset, and predicted the network traffic based on
the most influential features of the network traffic in the road
and network. Reference [31] proposed a federated learning
framework based on a consortium blockchain, where model
updates from distributed vehicles are verified by miners to
prevent unreliable model updates and then stored on the
blockchain.

In federated graph learning, [32], [33], [34], and [35] aim
to incorporate graph neural network (GNN) models into a
federated learning framework. The primary focus of these
studies is on leveraging the federated system for enhanced
privacy protection. Additionally, they seek to improve the
accuracy of GNN model training within this distributed
learning environment. In the federated learning paradigm,
the integration of GCNs is a significant step forward, as it
allows for the modeling of complex graph-structured data
while maintaining the privacy of individual participants’ data.
This is achieved by training the models on decentralized data
without the need to centralize the data itself, thus ensuring
that sensitive information remains confidential.

As shown in Table I, and through the summary of the above
related works, we found that there are two problems in the
current research in the field of traffic prediction: 1) Insufficient
consideration of the structural characteristics of traffic data; 2)
The privacy of data is not well protected during the training
process. Therefore, this paper uses a FC-FedGCN framework
for traffic prediction, which solves the above problems well.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Formal Concept Analysis

FCA is a mathematical theory used to describe and
analyze the classification structure of data and used to

process conceptual data systems. The core idea of FCA is
to regard concepts as associations between sets of objects
and sets of attributes, and to reveal the relationships between
concepts through formal methods. It can provide a rigorous
mathematical framework to analyze conceptual data systems
and process large-scale data sets.

Definition 1 (Formal Context): Formal context is consists
of a set of objects and attributes in all research fields,
usually represented by a binary relationship matrix, where
the rows represent the set of objects, the columns represent
the set of attributes, and the elements in the table mark
whether the objects have the corresponding attributes. Formal
context is represented as triplets K = (O, P, R), where
O = {o1, o2, . . .} is the object set, P = {p1, p2, . . .} is the
attribute set, and R is the binary relationship between O and
P . R ∈ O × P , and (o, p) ∈ R means that object o has
attribute p.

In a traffic network G = (V, E), V = {v1, v2, . . . , vm} is
the set of intersections, and E = {e1, e2, . . . , en} is the road
connecting the two intersections. With this background, the
objects and attributes in the formal context are all intersections
v. If there exists a road ei j between intersections vi and v j , the
corresponding ith row and jth column of the formal context
matrix is set to 1, otherwise set to 0. The modified adjacency
matrix generated based on the following rules is the formal
context of the social network:

I =


1, (vi , v j ) ∈ E

1, i == j
0.other

 = ai j (1)

we denote this formal context as K = (V, V, R).
Definition 2 (Concept Lattice): In FCA, a concept is com-

posed of a set of objects and a set of attributes. And the
following conditions are satisfied all objects in the collection
have all the properties in the collection, and objects outside the
collection do not have these properties. For a formal context
triple K = (O, P, R) or K = (V, V, R), a concept can
be represented as a binary pair (A, B), where A ⊆ O and
B ⊆ P , A and B are called the extent and intent of this concept
respectively. A concept lattice L(O, P, R) can be generated
by topological relations between all concepts in C(K ).

Example 1: Fig. 1 shows a partial subway line diagram
of a city. We take five transfer stations as an example to
extract the traffic network diagram shown in Fig. 2. Fig. 2
depicts a traffic network consisting of 5 nodes and 7 edges.
In this network, the nodes symbolize intersections, and the
edges connecting these nodes represent the roads that link
them. It is important to note that each node is characterized
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Fig. 1. A railway network.

Fig. 2. A traffic network.

TABLE II
EXAMPLE FORMAL CONTEXT K

by distinct features such as speed, traffic flow, and occupancy.
Table II shows its formal context K with O = {1, 2, 3, 4, 5}
and P = {1, 2, 3, 4, 5}. Here, both objects and attributes are
represented by the nodes themselves, and the road of an edge
between two nodes is denoted by an “X”. It can be observed
that object {1} has the same attributes {1, 3, 4, 5}, and attributes
{1, 3, 4, 5} also correspond to the same objects {1}. Thus we
get the concept ({1}, {1, 3, 4, 5}). {1} is the extent of this
concept, and {1, 3, 4, 5} is the intent of this concept. Due to the
symmetric nature of this formal context, there exists an inverse
symmetrical concept ({1, 3, 4, 5}, {1}) under this example.

Definition 3 ([36], [37] Generator): Given a formal con-
cept (A, B) of C(K ), Q ⊆ A is a generator of A if Q′ = B
(and hence Q′′ = A, ′ represents Generator).

Definition 4 ([37], [38] Concept Stability): Let
K = (O, P, R) be a formal context. Given a formal
concept (A, B) of C(K ), the concept stability σ of (A, B) is
defined as follows:

σ(A, B) =
|{Q ⊆ A | Q′ = B}|

2|A|
(2)

The stability of a concept is a metric that assesses the
resilience of the concept’s definition against variations or
disturbances within the data. Specifically, it evaluates the
condition where the removal of certain entities from the set

Fig. 3. Concept lattice of Example 1 (each node represents a concept which
is formed by extent (in blue) and intent (in red)).

of objects (extent) associated with a formal concept (A, B)

does not lead to a change in the concept’s intent. A concept
with higher stability indicates a more consistent and reliable
structure, as represented by the vertices of the concept within
a graph. This also implies a stronger distinction and separation
of the concept when viewed in the context of the entire data
structure.

Definition 5 ([37], [38], [39] Concept Separation): Let
K = (O, P, R) be a formal context. Given a formal concept
(A, B) of C(K ), we define the concept separation ξ of (A, B)

as follows:

ξ(A, B) =
|A| |B|∑

e∈A | f (A)| +
∑

i∈B |g(B)| − |A| |B|
(3)

Separation is a metric that quantifies the uniqueness of
a concept within a dataset, relative to the distribution of
objects across the various extents of formal concepts. It is
determined by the ratio of the distinct area that a particular
concept occupies to the overall area encompassing all the
objects and attributes associated with that concept. Typically,
a concept with a more focused distribution, or a smaller spread,
is deemed more representative.

Definition 6 ([15] Equiconcept): Given a concept (A, B)

of C(K ), if A = B, then concept (A, B) is an equiconcept.
It is clear that two concepts are considered identical if they

share the same extent and intent, meaning there is a one-to-
one correspondence between the elements of the node sets
that constitute each concept. Such concepts are referred to as
equiconcepts.

Equiconcepts hold a distinctive position within the structure
of a concept lattice. In our prior research, we have established
that there exists an equivalence between equiconcepts and
maximal cliques [15]. This implies that the process of
identifying equiconcepts within a concept lattice is analogous
to the task of locating maximal cliques in the underlying graph,
and this equivalence can be formulated as:

ζ(K ) ≡ maximal_clique(G) (4)
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TABLE III
CONCEPTS THAT GENERATED BY FIG. 2

where K is the formal context of the graph G, ζ(K )

denotes the set of equiconcepts for formal context K , and
maximal_clique(G) denotes the set of maximal cliques in
graph G.

Example 2: Continuing the Example 1, Table III presents
the concept stability, separation and the identification of
equiconcepts. It is observed that the stability of concept
({1}, {1, 3, 4, 5}) is 1/2, where 2 represents the base of the
set {1, 3, 4, 5} and 1 represents the number of generators
of this set. The separation of concept ({1}, {1, 3, 4, 5}) is
4/15, where 4 is the common area of this concept and it is
shown as the red part in Table II, while 15 is the total area
occupied by the extent and intent and is shown as the red
and gray part in Table II. Within the table, three concepts
are recognized as equiconcepts, characterized by identical
extents and intents. These equiconcepts are typically observed
to possess higher stability and separation values compared
to other concepts. This heightened stability and separation
suggest that the equiconcepts are associated with maximal
cliques within the graph that are more robust and distinct.

B. Formal Concept-Enhanced Graph Convolutional Neural
Networks

GCN is a neural network architecture specifically designed
to process graph structured data. It learns the features of nodes
by utilizing the topological structure information in the graph
and performing convolution operations on the nodes in the
graph. In this section, we denote a graph as G = (V, E),
where V = {v1, v2, . . . , vm} is called the vertices set and E =
{e1, e2, . . . , e j } is called the edges set. A ∈ Rm×m and X ∈
Rm×n are the adjacency matrix and feature matrix of the graph
respectively, where m is the number of nodes of graph G, n
is the length of the nodes’ feature.

Example 3: Continuing with Example 2, we can see
through Table III that four of the sixteen concepts generated
are equiconcepts, therefore we generate a matrix with
dimension 5 × 4, and perform “⊕” operation as defined in
Eq.(9) with the original feature matrix to generate a new
feature matrix X∗.

The iterative process of FC-GCN can be summarized as
follows:

H l+1
= θ(D̃−

1
2 ÃD̃−

1
2 (X∗)l W l) (5)

Among them, Ã = A + I , Ã is the modified adjacency
matrix of the data set input to this layer, D is the degree of Ã
and D̃ = D+ I , so D̃−

1
2 ÃD̃−

1
2 is the Laplacian matrix, X∗ is

the updated feature using FCA, W l is the trainable parameter
matrix of the l layer of GCN, H l and H l+1 are the input
and output of lth layer respectively, Ho is the original feature
matrix and Heq is the added feature matrix.

C. Federated Learning

In the diagram illustrated as Fig. 4, we examine a horizontal
federated learning framework consisting of a single server and
several clients. Within this system, each edge device utilizes its
own local dataset to train models. Subsequently, the server is
responsible for consolidating the parameters of the models that
have been trained by the edge devices. After aggregation, the
server disseminates the synthesized model parameters back to
the edge devices. This process enables the devices to proceed
with the subsequent phase of model training. We assume that
device k has the dataset Dk = {xk, j , yk, j }

nk
j=1, nk = |Dk |

indicates the amount of data in the dataset Dk , xk, j denotes
the jth input data of the kth device, yk, j is the label of xk, j .
The overall dataset D =

⋃
k∈N Dk , the overall sample n =∑N

k=1nk . The goal of training is to find model parameters
ω to minimize the loss function on the overall dataset, local
parametric model is shown as the following formula [10]:

ωk
t+1 ←− ωk

t+1 − η ▽ Fk(ω) (6)

where Fk(ω) = 1
nk

∑
{xk, j ,yk, j }∈Dk

f (ω, xk, j , yk, j ) is local
loss function, loss function f (ω, xk, j , yk, j ) measures the
inaccuracy of the model parameter ω on the data pair
(xk, j , yk, j ). After that the central server aggregates all the
parameters and returns them to the clients through the
following formula [10]:

ωt+1 =

M∑
k=1

mk

m
ωk

t+1 (7)

which mk
m is the proportion of samples in client k in round

t + 1 to all samples of the M clients participating in training.

D. Problem Statement

In this paper, we first adopt the formal concept-enhanced
graph convolutional network to predict traffic rate, flow and
occupancy. Then, we illustrate the use of the characteristics
of federated learning framework to solve the problem of data
privacy and achieve the purpose of improving the accuracy of
model training.

1) Problem Statement: Suppose there are k clients, and each
client has a set of traffic data sets Gk , Gk = (Vk, Ek, Xk),
where Vk = {vki }

N
i=1 is the node set of a network with N

nodes, Ek = {(vki , vk j ) | 1 ≤ i, j ≤ N , i ̸= j} is the edge set
of this traffic network, and Xk = {xki }

N
i=1 is the feature set

of Gk . Our goal is minimize the overall loss function of all
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Fig. 4. Federated learning.

Fig. 5. Framework of formal concept-enhanced federated graph learning for
traffic prediction.

clients by optimizing the parameters and predict future traffic
characteristics such as flow at each node. Consequently, the
primary goal of the loss function is to reduce the discrepancy
between predicted and real traffic data to the greatest extent
possible.

MSE =
1
N

N∑
i=1

(yi − ŷi )
2 (8)

As shown in Fig 5, each client trains the local FC-GCN
model, generates its own model parameters, and uploads them
to the central server for aggregation via Eq. 7. The server
sends the aggregated parameters back to all clients to update
local parameters via Eq. 6 for next round of training. In the
first round of training, each client only uses local raw data
as training data to obtain the traffic prediction model and its
parameters. In subsequent training, each client updates local
data and trains through global parameters.

IV. FORMAL CONCEPT-ENHANCED
FEDERATED GRAPH LEARNING

In this section, we introduce the FC-FedGCN framework
for traffic prediction. As shown in Fig. 6, the framework is

divided into three modules, i.e., FCA-based graph processing,
FC-GCN model training and Federated Learning. In the
FCA data processing module, we conduct an analysis of
the original data to extract concept features, which enrich
the feature representations of the original nodes. It processes
results in the generation of a formal concept-enhanced
graph and features for each client. In the FC-GCN Model
training module, each client abstracts the traffic network
graph into graph data, and uses the traffic flow, occupancy,
speed and other data collected by sensors as features for
FC-GCN model training. The Federated Learning module is
bifurcated into client and server components, where the formal
concept-enhanced graph is trained, leading to the acquisition
of an updated model, and achieve the prediction results of
traffic data.

A. FCA-Based Graph Preprocessing

In order to improve the accuracy of GCN in traffic data
feature extraction, this study integrated the FCA concept lattice
feature extraction method based on traditional GCN, so that
the model can benefit from higher-level structured information.
Specifically, FCA mines equiconcepts between nodes through
the concept lattice structure, and uses the feature update
mechanism of the maximal cliques to fuse the equiconcept
matrix with the original feature matrix to generate an enhanced
feature matrix. This feature enhancement operation not only
improves the model’s ability to represent different traffic
nodes, but also significantly reduces the model’s training
error on complex graph structures. In this way, FC-GCN
can simultaneously capture local and global features when
node features are updated, thereby improving the model’s
prediction accuracy in multi-regional transportation networks.
Compared with traditional GCN, which only relies on node
neighborhood information extraction, this method is more
suitable for handling the heterogeneity of cross-regional
data and achieving better feature representation under the
constraints of data privacy.

In the FCA-based graph preprocessing module, each client
processes its local data independently. Given a traffic network
G = (V, E) as the local graph input to the FCA data
processing module, we first process the local graph data
and add self-loops to each node. In the corresponding
graph adjacency matrix, the elements on the diagonal are
all 1. Then we perform FCA on the processed data to
obtain its concepts C(K ) and corresponding concept lattices
L(V, V, R). By calculating and evaluating the stability of
the concepts in the concept set, we obtain the new graph
node characteristic value, which we call conceptual features.
After feature splicing operation, we finally obtain formal
concept-enhanced graph and features.

As previously stated, an equiconcept is a unique concept
characterized by an identical extent and intent, which
corresponds to the structure of maximal clique within a
clustering framework. Maximal cliques represent significant
structural components of a graph. The features of an
equiconcept are derived from the extraction of these maximal
cliques, thereby enriching the graph’s feature matrix. This
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Fig. 6. Overall flowchart of FC-FedGCN for traffic predication.

Algorithm 1 Feature Update
Input:

Graph feature matrix X ∈ Rm×n , concepts set C(K );
Output:

updated feature matrix X∗ ∈ Rm×(n+eq);
1: Initialize maximal clique matrix f , maximal clique set ζ ,

matrix X∗

2: begin
3: for ∀(E, I ) ∈ C(K )

4: if E == I
5: ζ = ζ ∪ (E, I )
6: eq = eq + 1
7: end for
8: for (E, I ) j ∈ ζ

9: if vi ∈ E fi j = 1
10: else fi j = 0
11: end for
12: X∗ = X ⊕ f
13: end

enhancement effectively boosts the model’s training efficiency
and accuracy.

FC-GCN uses the FCA method to preprocess the input
graph data and update the feature representation of its nodes.
We extract the equiconcepts with number eq in C(K ) and
generate a 0-1 matrix f ∈ Rm×eq . Then use the matrix f
to update the feature matrix X of the graph to generate the

updated feature matrix X∗, which defines the operation “⊕”
as following:

X∗ = X ⊕ f, X∗ ∈ Rm×(n+eq) (9)

The updating process and results are shown in Algorithm 1.

B. Federated Learning

Federated learning is bifurcated into two primary compo-
nents: the client and the server. The client’s role is to train
the local model, while the server’s role is to aggregate the
parameters from the models trained by the clients and then
disseminate these aggregated parameters back to the clients.
This cycle of training and parameter sharing continues to
iteratively refine the model. In this section, we delve into the
specifics of how federated learning is applied in the context
of formal concept-enhanced federated graph learning.

Under FL, each client performs model training locally
and shares parameters based on the concept feature matrix
extracted by FCA and the update rules of GCN. Through
parameter exchange between multiple clients, FL realizes
the fusion of cross-regional traffic data features, but does
not directly transmit data, thereby ensuring data privacy.
Compared with the traditional FL model, the FC-FedGCN
proposed in this paper can improve the adaptability and
generalization of the global model to traffic characteristics of
different regions while maintaining data privacy through the
aggregation of concept features.
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1) Local FC-GCN Model Training by Clients: In the
federated learning framework, each client is tasked with
training the FC-GCN model utilizing the local data derived
from the formal concept-enhanced graph. Prior to commencing
the inaugural training round, clients receive the divided
formal concept-enhanced graph data from the Formal
Concept-Enhanced Graph module, which serves as the
foundation for the initial model training. Subsequently, they
initiate the first training round.

At the onset of the initial training round, client k initializes
the local weight parameters W k and feeds in the Laplace
matrix along with the formal concept-enhanced feature matrix
to facilitate model training. Upon completion of the first round,
client k uploads the local model parameters to the server,
where they are integrated with other client parameters to
form the new global model parameters W̄1. Client k then
proceeds with the second round of training using these updated
parameters.

Following this, the clients engage in several training
iterations to refine the feature weights in accordance with their
respective local graph data. The methodology for training is
encapsulated in the subsequent equation:

H l+1
= θ(Q̃l(X∗)l W l), Q̃l

= D̃−
1
2 ÃD̃−

1
2 (10)

where X∗ is the feature matrix of the original graph data Ho
with the added features Heq with operation “⊕” to obtain the
formal concept-enhanced feature matrix, and it is used as the
initial feature input for the first round of training.

Specifically, each training iteration is composed of two
principal phases: the operation of the graph convolution
layer and the activation of the softmax function. The local
FC-GCN training process for each client clientk is described
in Algorithm 2.

Algorithm 2 Local FC-GCN Training of Clientk
1: for each training round t
2: Construct an FC-GCN Gi =

{
V1

i ,V2
i , . . . ,VL

i
}

3: for each v ∈ V l
i

4: if t == 1
5: Z l+1

=
∑

v∈Vi
Q̃l

i (X∗)l W l
i

6: if t > 1
7: Z l+1

=
∑

v∈Vi
Q̃l

i (X∗)l W l
i +

∑
u∈V j

Q̃l
j (X∗)l W l

j
8: ( j ̸= i)
9: end if

10: H l+1
= θ(Z l+1)

11: end for
12: end for

The subsequent training rounds following the initial one,
once the clients have received the global parameters from
the server, client k will then proceed to update the local
parameters for the upcoming training round. Degree matrix
D and adjacency matrix A are shown as:

Dt+1
uv =


∣∣N ′(v)

∣∣
|N (v)|

Dt
uv, u ∈ N ′(v)

Dt
uv, other

(11)

At+1
uv =

{
1, u ∈ N ′(v)

0, other
(12)

where N (v) denotes the neighbor of node v at the tth round
of training and N ′(v) denotes the neighbor node of v at the
(t + 1)th round of training.

The purpose of traffic forecasting is to ensure that the
predictions closely align with the actual traffic conditions.

2) Parameter Aggregation by Server: In every cycle of
federated learning, clients send their local model parameters
to the server. Upon receiving all the parameters W =

{W1, W2, . . . , Wk}, the server consolidates these local model
parameters to derive the global parameter W̄ . This global
parameter is then disseminated back to all clients, initiating
the subsequent round of training. The parameter aggregation
formula is shown in Eq.(13):

W̄ t+1
=

∑
i∈W

|V t
i |∑

i∈W |V
t
i |

W t
i (13)

where vt
i is the nodes set of of client i at the tth training round,

W̄ t+1 is the global parameter at the (t+1)th round of training.
When the clienti receives the global parameters, it will update
the local parameters according to the global parameters with
the following equation:

W t+1
i =

∑
j∈W

∣∣V j
∣∣ W t

j∑
j∈W

∣∣V j
∣∣ (14)

where V j is the set of nodes with labels in the client j .

V. EXPERIMENTS

In this section, we present a comprehensive overview of our
experimental setup and findings. Furthermore, we also present
comparative results between our approach and other existing
baselines. The source code has been uploaded to github.1

A. Datasets and Settings

In the experiment, we use the well-known traffic flow
dataset PEMS. The PEMS dataset contains traffic flow
data from multiple sensor sites, covering a large number
of traffic parameters such as vehicle flow, vehicle speed,
and lane occupancy. We use PEMS042 and PEMS083 as
training data on different clients. PEMS04 contains data from
3848 detectors on 29 highways in the San Francisco Bay
Area from January 1, 2018 to February 28, 2018, collected
every 5 minutes, so the shape of the original traffic data after
reading is (307, 16992, 3), where the 3D features are flow,
occupy, speed. PEMS08 contains data from 1979 detectors
on 8 highways in San Bernardino, Southern California, from
July 1, 2016 to August 31, 2016, and its data shape is (170,
17856, 3). When the number of clients is greater than two,
we use the above datasets as training data on different clients.

During the conducted experiments, the input data underwent
normalization, resulting in a range confined between 0 and 1.
The dataset is then divided, with 80% allocated for training

1https : //github.com/K aiii i i1/tra f f ic_predici tion
2https : //gitcode.com/open − source − toolki t/5072d
3https : //gitcode.com/open − source − toolki t/73aea
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the model and the remaining 20% reserved for testing the
model. The objective is to forecast traffic speeds for the
subsequent 15, 30, 45, and 60 minutes. We have three
adjustable parameters: client_num representing the number
of clients, epochs indicating the number of training iterations
for the local models, and round denoting the number of
times parameters are aggregate. We then evaluate the traffic
prediction model using the following evaluation metrics in
different models:
• Mean Absolute Error (M AE):

M AE =
1
n

n∑
i=1

|yi − ŷi | (15)

• Root Mean Square Error (RM SE):

RM SE =

√√√√1
n

n∑
i=1

(yi − ŷi )2 (16)

• Coefficient of Determination (R2):

R2
= 1−

∑n
i=1(yi − ŷi )

2∑n
i=1(yi − ȳ)2 (17)

• Variance (V ar ):

V ar = V ar = 1−
V ar(y − ŷ)

V ar(y)
. (18)

• Accuracy (Acc):

Acc = 1−
|yi − ȳ|
|y|

(19)

M AE is used to measure the average absolute difference
between the predicted value and the true value. The smaller the
value, the smaller the model prediction error. RM SE measures
the standard deviation between the predicted value and the
true value, which can reflect the degree of dispersion of the
prediction error. R2 is used to measure the ability of the model
to explain the variables. The closer the value is to 1, the
better the model can explain the variability of the data. V ar
is used to evaluate the volatility of the data set and the fit
of the model. Acc measures the degree of match between the
model prediction results and the true value, which is usually
determined by comparing the consistency of the prediction
results with the true results.

B. Results and Analysis

For comparison we extend the following schemes for
FC-FedGCN as follows.
• History Average model (HA) [40]: HA utilizes the mean

traffic data from previous time periods as a forecast.
• Autoregressive Integrated Moving Average model

(ARIMA) [41]: ARIMA adjusts the observed time series
to a parametric model for forecasting future traffic data.

• Support Vector Regression model (SVR) [42]:SVR
employs historical data for model training to establish
the correlation between inputs and outputs, subsequently
forecasting by inputting anticipated future traffic data.

• GCN [9]: GCN serves as a feature extraction technique
for graph-structured data. The primary objective of GCN

is to distill meaningful features from the graph data,
enabling it to effectively carry out various tasks, including
vertex classification and edge prediction.

• T-GCN [26]: T-GCN innovative model fuses the strengths
of GCN and Gated Recurrent Units (GRU). The
GCN component is tasked with deciphering intricate
topological patterns to grasp spatial relationships, while
the GRU component is designed to understand the
fluctuating nature of traffic data, thereby capturing
temporal dynamics.

• AST-GCN [25]: AST-GCN incorporates external factors
by categorizing them into dynamic and static attributes
and employs an attribute enhancement module to encode
and assimilate these elements into the spatio-temporal
graph convolutional framework.

• DCRNN [27]: DCRNN approach to modeling traffic
flow treats it as a diffusion process across a directed
graph. This method introduces a diffusion convolutional
recurrent neural network that adeptly integrates the spatial
and temporal aspects of traffic flow. By employing
bidirectional random walks on the graph, it effectively
captures spatial dependencies.

• Graph WaveNet [29]: Graph WaveNet accurately captures
the hidden spatial dependencies in the data by developing
a novel adaptive dependency matrix and learning it
through node embedding.

• STGCN [28]: STGCN addresses the problem on
graph-structured data and constructs the model using
full convolutional layers, resulting in significantly faster
training and reduced parameter count.

• FC-GCN: FC-GCN is a graph convolutional neural
network to extract and refine the features from the
input convolutional layer. By incorporating information
of equiconcept, it enhances the feature representation,
thereby improving the model’s predictive accuracy.

• FC-FedGCN: FC-FedGCN is a Federated Graph frame-
work, which train graph data on each client and exchange
parameters between sever and clients, to improve the
model’s accuracy and protect data privacy.

Experiment1–Comparison of Model Indicators with
Baseline Methods

Table IV presents a comparison of the FC-FedGCN model
with other baseline methods on the PEMS datasets. The results
indicate that the FC-FedGCN model consistently achieves
superior predictive accuracy across all considered evaluation
metrics and for nearly all forecast horizons. This underscores
the efficacy of the FC-FedGCN model in the domain of traffic
flow prediction. ∗ means that the values are too small to
be negligible, indicating that the model’s prediction effect
is poor. Specifically, the FC-GCN and FC-FedGCN models
demonstrated a reduction in Root Mean Square Error (RMSE)
of approximately 11.3% and 50.6%, respectively, compared
to the Historical Average (HA) model, with corresponding
increasing in accuracy of about 2.75% and 8.53%. A lower
RMSE value also indicates that there are few outliers in
the predicted values. When compared to the Autoregressive
Integrated Moving Average (ARIMA) model, the RMSE is
reduced by around 14.5% and 52.4%, and the accuracy
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TABLE IV
THE PREDICTION RESULTS OF FC-FEDGCN AND

OTHER BASELINE METHODS

is enhanced by 28.04% and 33.82%. Similarly, against the
Support Vector Regression (SVR) model, the FC-GCN and
FC-FedGCN models show a decrease in RMSE by 6.81%
and 48.1%, with accuracy improvements of about 1.21% and
6.99%.

These superior results can be attributed to the limitations
of traditional methods like HA, ARIMA, and SVR in dealing
with intricate and non-stationary time series data. The GCN
model’s subpar performance is attributed to its focus solely on
spatial features without delving deeply into the nuanced spatial
characteristics of traffic data. Moreover, despite ARIMA’s
reputation as a well-established traffic forecasting technique,
its accuracy is surpassed by the HA model, primarily due
to its challenges in managing long-term and non-stationary
datasets. The ARIMA model’s forecasting process, which
involves calculating the error at each node and averaging these
values, is susceptible to increased overall error if certain data
points exhibit significant fluctuations.

The FC-FedGCN model adds a federated learning frame-
work and performs feature aggregation on traffic data in
various regions while protecting data privacy. Compared with
the FC-GCN model, the RMSE is reduced by 44.3% and
the model accuracy is increased by 5.78%. Additionally,
compared with other machine learning-based methods such as
T-GCN, AST-GCN, DCRNN, Graph WaveNet and STGCN,
FC-FedGCN has better performance in terms of MAE, RMSE,
and accuracy. Specifically, the improvement of MAE is 6%
to 21.6%, RMSE is 2.8% to 14.6%, and accuracy is 0.7%
to 3.6%. These experimental results demonstrate that the
FC-FedGCN has higher performance for traffic prediction.

In addition, we can conclude that the FC-FedGCN model
has a higher consistency in prediction results than the
HA model, ARIMA model, and SVR model. Although the
FC-FedGCN model has a smaller R2 and limited explanability,
the smaller variance means that the prediction results given
by the model are relatively stable and do not fluctuate greatly.
Small fluctuations in the data set will also lead to smaller
variance in the prediction results even if the model has a weak
explanability.

Fig. 7. The influence of different parameters on model accuracy.

Experiment2–Interpretation of FC-FedGCN
(1) The effect of hyperparameters. We train the traffic

prediction accuracy under different parameters client_num =
5, epoch ∈ [20, 120] and round ∈ {20, 40}, client_num is
the number of clients, epoch is the client training epoch, and
round is the number of rounds of parameter exchange between
the client and the server.

As shown in Fig. 7, the horizontal axis is epoch and the
vertical axis is model accuracy acc. Note that, the blue curve
round = 20 and the red curve round = 40. We can observe that
as epoch increases, the model accuracy increases accordingly,
but after the local training round increases to 100 rounds, the
increase in model accuracy slows down, which may be caused
by overfitting of the model training. Increasing the number of
server parameter aggregations can also improve the accuracy
of model training. For example, in Fig. 7(a), the red curve
is mostly above the blue curve; in addition, the increase in
the number of clients can also play the same role. This is
because during the federated learning training process, each
client shares local data by sharing parameters, enriching local
features and improving model accuracy.

(2) The effect of different length of train data. Figs. 8 to 11
show the results of using 3, 6, 9, and 12 time steps as training
data and predicting the traffic flow in the next time step. The
upper sub-figure of each figure is the prediction result of the
last 100 time steps from February 22, 2018 to the beginning,
and the lower figure is the prediction result of the last 30 time
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Fig. 8. The visualization results for prediction of 15 minutes.

Fig. 9. The visualization results for prediction of 30 minutes.

Fig. 10. The visualization results for prediction of 45 minutes.

steps from February 22, 2018. From the visualized results,
we can draw the following conclusions:
• For different time step settings, the model can predict the

traffic flow well. The prediction results of the model are
similar to the changing trend of the real traffic flow;

• The model trained with a longer time step performs better
in predicting traffic flow, which is most obvious when

Fig. 11. The visualization results for prediction of 60 minutes.

Fig. 12. Perturbation analysis. (a) The results of adding gaussian perturbation
on PEMS. (b) The results of adding poisson perturbation on PEMS.

the time step is increased to 12, but the improvement in
model performance from 6 to 3 time steps is not obvious;

• To pinpoint the inflection point in traffic flow trends,
the FC-FedGCN model exhibits significant discrepancies
during both peak and off-peak periods. This could
be attributed to the abrupt shifts in traffic conditions
influenced by elements like weather and temporal factors.

Experiment3–Perturbation Analysis and Robustness
In the real-world data collection process, noise is an

unavoidable factor. To evaluate the noise resistance of
the FC-FedGCN model, we conducted perturbation analysis
experiments to test the model’s robustness. During these
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experiments, we introduce two types of common random noise
into the dataset: Gaussian noise following the distribution
N (0, σ 2) where σ takes values from the set {0.2, 0.4, 0.6, 0.8,
1}, and Poisson noise following the distribution P(λ) where
λ takes values from the set {1, 2, 4, 8, 16}. After adding
the noise, we normalized the noise matrix values to the range
[0, 1]. The results of the experiments, using various evaluation
metrics, are as follows.

Fig. 12(a) illustrates the impact of adding Gaussian noise
to the PEMS dataset. The horizontal axis represents the
Gaussian distribution parameter σ , the vertical axis shows
the variation in the evaluation metrics, and different colors
represent different metrics. Fig. 12(b) similarly presents
the outcomes of introducing Poisson noise to the PEMS
dataset. The results indicate that the evaluation metrics exhibit
minimal changes regardless of the type of noise distribution
applied. Consequently, the FC-FedGCN model demonstrates
robustness and is capable of effectively managing datasets with
high levels of noise.

VI. CONCLUSION

This paper proposes the FC-FedGCN framework for traffic
prediction. This proposed approach not only uses the FCA
to optimize the graph convolutional network model training
process and improve the model training accuracy, but also
adopts the federated learning framework to prevent the
leakage of original data, further improving the model training
accuracy while eliminating privacy issues between users. The
extensive experiments on the FC-FedGCN framework with
the PEMS datasets demonstrate that the model trained by it
has certain advantages in traffic prediction. In future research,
we will investigate the security of the FC-FedGCN framework
and optimize its security performance in combination with
advanced methods.
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