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K-Clique Community Detection in Social Networks
Based on Formal Concept Analysis

Fei Hao, Geyong Min, Zheng Pei, Doo-Soon Park, Member, IEEE, and Laurence T. Yang

Abstract—With the advent of ubiquitous sensing and network-
ing, future social networks turn into cyber-physical interactions,
which are attached with associated social attributes. Therefore,
social network analysis is advancing the interconnections among
cyber, physical, and social spaces. Community detection is an
important issue in social network analysis. Users in a social net-
work usually have some social interactions with their friends in
a community because of their common interests or similar pro-
files. In this paper, an efficient algorithm of k-clique community
detection using formal concept analysis (FCA)—a typical com-
putational intelligence technique, namely, FCA-based k-clique
community detection algorithm, is proposed. First, a formal con-
text is constructed from a given social network by a modified
adjacency matrix. Second, we define a type of special concept
named k-equiconcept, which has the same k-size of extent and
intent in a formal concept lattice. Then, we prove that the k-clique
detection problem is equivalent to finding the k-equiconcepts.
Finally, the efficient algorithms for detecting the k-cliques and
k-clique communities are devised by virtue of k-equiconcepts and
k-intent concepts, respectively. Experimental results demonstrate
that the proposed algorithm has a higher F -measure value and
significantly reduces the computational cost compared with previ-
ous works. In addition, a correlation between k and the number of
k-clique communities is investigated.

Index Terms—k-clique, k-clique community, equiconcept,
formal concept analysis (FCA), social networks.

I. INTRODUCTION

A CYBER-PHYSICAL SYSTEM (CPS) is a system fea-
turing a combination of computational and physical ele-

ments, all of which are capable of interacting, reflecting, and
influencing each other. Furthermore, social systems are evolv-
ing with cyber systems and physical systems along with the
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popularity of online social networking [1]. A novel emerg-
ing computing paradigm cyber-physical-social system (CPSS),
which converges the cyber, physical, and social spaces, is
changing the way we see the world [2]. Online social networks,
the main representation of the social spaces, are playing a crit-
ical role in shaping the behavior of users on the web. In social
networks, users usually gather together and have a number of
social interactions with each other in several communities due
to their common interests and purposes. Therefore, community
detection within social networks is a promising technique that
provides an insight into the structural characteristics of the so-
cial networks and computational intelligence for social users in
CPSSs. Community detection in networks aims to find groups
of vertices within which connections are dense, but between
which connections are sparser [3], [4]. In particular, the knowl-
edge and computational intelligence of community structures
can help us understand the behaviors and organization style
of users in social networks [5], [6]. Two types of community
detection methods are discussed in [7]: those that provide a
partition of the network and those that provide a cover of the
network. The main difference between these two techniques is
that the former type does not allow communities to overlap,
whereas the latter does. This paper aims at exploiting the second
type of community detection methods with a focus on the
k-clique community detection.

There has been some theoretical and empirical work on how
the k-cliques and k-clique communities can be detected in
social networks [8]–[14]. Adamcsek et al. [10] provided a faster
CFinder to find the k-cliques. Kumpula et al. [11] proposed the
sequential clique percolation algorithm to improve detection
efficiency. However, these improved methods perform poorly
on networks with the kind of pervasively overlapping com-
munity structure existing in many real-world social networks.
Palla et al. [12] were first to define the k-clique community
and extracted a set of k-clique communities with CFinder.
Saito et al. [13] presented a new notion of a subnetwork called
k-dense and proposed an efficient algorithm for extracting the
k-dense communities. Duan et al. [14] solved the k-clique
clustering in a dynamic social network. Tang et al. [15] aimed
to reveal the similar structural and functional information of
organic chemicals and proposed an approach for chemical
structural retrieval based on formal concept analysis (FCA).
However, there is no previous work on k-clique and k-clique
community detection using FCA. In fact, FCA provides a
more clear view to understand the network topology [16], [17].
Snael et al. [16] proposed a novel approach to overcoming some
practical issues when dealing with analysis and visualization of
large-scale social network data using FCA.
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With the help of FCA’s powerful analysis ability on net-
work topology, this paper studies the FCA-based k-cliques and
k-clique community detection. To the best of our knowledge,
this work is the first to study the k-cliques and k-clique com-
munity detection problems using FCA. First, the transformation
from a social network to a formal context, which is an input of
the FCA method, is studied; then, a formal concept lattice is
obtained. Then, we prove that the problem of k-clique detection
is equivalent to the problem of finding the k-equiconcepts. Fi-
nally, the efficient algorithms to detect thek-cliques and k-clique
communities are devised with the help of k-equiconcepts and
k-intent concepts, respectively. The major contributions of this
paper are as follows.

1) Formal Context Construction: We provide a solution
for formal context construction of a social network by
using a modified adjacency matrix. First, each vertex in a
social network is regarded as both objects and attributes.
Second, a binary relation between the objects and at-
tributes is defined according to the social interaction.
Third, a formal context is generated from the social
network by the modified adjacency matrix.

2) FCA-Basedk-Clique Detection: An FCA-basedk-clique
detection approach is proposed. First, we prove that the
k-clique detection problem is equivalent to finding the
k-equiconcepts in the concept lattice of a social network.
In addition, an interesting conclusion that extra k-cliques
can be derived from the detected k-equiconcepts is dis-
covered. Then, an algorithm of detecting k-cliques with
FCA is presented.

3) FCA-Based k-Clique Community Detection: Follow-
ing k-clique detection, an FCA-based k-clique commu-
nity detection approach is devised. We prove that the
k-clique community detection problem is equivalent to
finding the k-intent equiconcepts in the concept lattice
of a social network. Then, we analyze the formation
principle of k-clique communities and find that each
k-clique community can be formed based on the skele-
ton k-cliques (k-intent concepts). Finally, an efficient
algorithm of FCA-based k-clique community detection is
presented.

4) Evaluations: The proposed approach is evaluated using
four data sets. First, we evaluate various approaches on
how well they can find the k-clique community structure
from a social network. Second, in terms of efficiency,
the proposed approach can detect the k-cliques and
k-clique communities quickly compared with other ex-
isting approaches. Finally, the correlation between k
and the number of k-clique communities is investigated
thoroughly.

The rest of this paper is organized as follows. Section II
presents the preliminaries about k-clique, k-clique commu-
nity, and FCA. The problem definition of k-clique community
detection is described in Section III. Section IV presents the
FCA-based k-cliques and k-clique community detection from a
social network, respectively. Experimental results are reported
in Section V. Finally, Section VI concludes this paper.

Fig. 1. Example of formal context and its corresponding concept lattice.
(a) Formal context. (b) Concept lattice.

II. PRELIMINARIES

This section presents the definitions of k-clique, k-clique
community, as well as the theory of FCA theory.

A. k-Clique and k-Clique Community

Definition 1 (Clique): Let G = (V,E) be an undirected
graph. A clique in G is a subset S ⊂ V such that for any two
vertices vi, vj ∈ S, there exists an edge (vi, vj) ∈ E.

Definition 2 (k-Clique): Let G = (V,E) be an undirected
graph. A k-clique in G is a subset S ⊂ V and |S| = k such
that for any two vertices vi, vj ∈ S, there exists an edge
(vi, vj) ∈ E.

Definition 3 (k-Clique Community): A k-clique community
[12] is defined as the union of all k-cliques (i.e., complete
subgraphs of size k) that can be reached from one or other
through a series of adjacent k-cliques (where adjacency means
sharing k-1 vertices).

B. FCA

FCA is a typical computational intelligence technique for
data analysis. FCA defines formal concept to represent the
relationships between objects and attributes in a domain. The
objects and attributes are grouped into concepts, and then, a
conceptual hierarchy of the concepts can be constructed.

Definition 4 [21] (Formal Context): A formal context is orga-
nized as a triple K = (U,A, I), where U = {x1, x2, . . . , xn} is
the set of objects, A = {a1, a2, . . . , am} is the set of attributes,
and I is the binary relation between U and A. I ⊆ U ⊗A,
(x, a) ∈ I denotes that object x has the attribute a, and (x, a) �∈
I denotes that object x does not have the attribute a, where
x ∈ U , a ∈ A.

Remark 1: Let “1” denote (x, a)∈I and “0” denote (x, a) �∈I .
Then, this formal context can be viewed as an information sys-
tem with only “0” or “1.” In many literatures, the cross table is
often used for describing the formal context, i.e., if (x, a) ∈ I ,
the binary relation I is represented as “×”; otherwise, the
blanks are given for (x, a) �∈ I .

Example 1: Fig. 1(a) shows a formal context. The set of
objects is U = {o1, o2, o3, o4}, the set of attributes is A =
{a, b, c, d, e}, and in which “×” denotes that there exists the
binary relation between U and A. For example, the object “o2”
has the attributes “a,” “b,” and “c.”
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Fig. 2. Toy example of k-clique community detection. (a) Social network G.
(b) 3-clique communities.

Definition 5 [22]: For a formal context K = (U,A, I), the
operators ↑ and ↓ on X ⊆ U and B ⊆ A are, respectively,
defined as

X↑ = {a ∈ A| ∀x ∈ X, (x, a) ∈ I} (1)

B↓ = {x ∈ U | ∀ a ∈ B, (x, a) ∈ I} (2)

∀x ∈ U , let {x}↑ = x↑, and ∀ a ∈ A, let {a}↓ ∈ a↓.
Definition 6 [21] (Concept): For a formal context K =

(U,A, I), if a pair (X,B) satisfies X↑ = B and B↓ = X , then
the pair (X,B) is a concept, where X is called the extent of the
concept, and B is called the intent of the concept. Let C(K)
denote the set of all concepts with respect to formal context K .

Definition 7 [22]: Let C(K) denote the set of all
formal concepts of the formal context K = (U,A, I). If
(X1, B1), (X2, B2) ∈ C(K), then let

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B1 ⊇ B2) (3)

then “≤” is a partial relation of C(K).
Definition 8 (Concept Lattice): A concept lattice L =

(C(K),≤) can be obtained by all formal concepts C(K) of a
context K with the partial order ≤. Its graphical representation
is a Hasse diagram. Fig. 1(b) illustrates the concept lattice for
the context of Fig. 1(a). Each circle denotes a concept. The
upper labels and lower labels of the circles represent intents
and extents of the concepts, respectively.

III. PROBLEMS DEFINITION

In this paper, we mainly investigate the k-clique commu-
nity detection problem using FCA theory in a social network.
The formulism of k-clique community detection problem is
described as follows.

Problem Statement (k-Clique Community Detection): Give
a social network G = (V,E), where the node set V includes
the entities in the social network, and the edge set E =
{(u, v)|u, v ∈ V } denotes the relationship between entities.
Once the parameter k is given, the k-clique community detec-
tion problem is to detect all k-clique communities from G.

To better understand the problem addressed in this paper, a
toy example of 3-clique community detection is given in Fig. 2.
Obviously, Fig. 2(a) is the topology of a social network G.
After k-clique community detection, there are k (here, k = 3)
separated communities that appear in G, as shown in Fig. 2(b).

Fig. 3. Social network g.

IV. FCA-BASED k-CLIQUE COMMUNITY DETECTION

This section provides a novel detection approach of k-clique
communities using FCA theory. To elaborate our approach
more clearly, we address and provide the solutions for the
following issues: 1) construct a formal context from a social
network G; 2) study the relation between the concept lattice
and k-clique as well as k-clique detection; and 3) present an
algorithm for detecting the k-clique communities.

A. Formal Context Construction

A social network G can be modeled as a set of subjects,
in which some of them have some relationships with others.
This can be formalized as a classical mathematical relationship
visualized as an undirected graph. In this paper, we adopt the
modified adjacency matrix of G as a formal context of G,
namely, FC(G) = (V, V, I), in which I is the binary relation-
ship between two vertices.

A modified adjacency matrix is defined as follows.
Definition 9 (Modified Adjacency Matrix): Let G be a graph

with n vertices that are assumed to be ordered from v1 to vn.
The n× n matrix A′ is called a modified adjacency matrix,
in which

A′=

⎧⎪⎨
⎪⎩

aij=1, if there exists an edge from vi to vj and i �= j

aij=1, if i=j

aij=0, otherwise.
(4)

Therefore, FC(G) is equivalent to the modified adjacency
matrix of G, i.e., FC(G) ≡ A′. According to the properties of
A′, FC(G) also has following properties.

Property 1:

1) FC(G) is symmetric.
2) One difference from the adjacency matrix is that all the

diagonal elements are “1”.

Example 2: Fig. 3 presents a social network g with vertices
indicating users and edges indicating the relationships between
users, and a formal context of g is constructed in Table I ac-
cording to the definition of the modified adjacency matrix.
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TABLE I
FORMAL CONTEXT OF g

B. k-Clique Detection

This section introduces the concepts of equiconcept and
k-equiconcept and then provides several interesting theorems
and properties about k-clique detection with k-equiconcepts.

Definition 10 (Equiconcept): For a formal context K =
(U,A, I), if a pair (X,B) satisfies X↑ = B, B↓ = X and
X = B, then the pair (X,B) is an equiconcept, where X is
called the extent of the equiconcept, and B is called the intent
of the equiconcept. Moreover, let EC(K) be the set of all
equiconcepts with respect to the formal context K .

Definition 11 (k-Equiconcept): For a formal context K =
(U,A, I), if a pair (X,B) satisfies X↑ = B, B↓ = X , X = B,
and |X | = |B| = k, then the pair (X,B) is a k-equiconcept,
where X is called the extent of the k-equiconcept, and B is
called the intent of the k-equiconcept. Moreover, let KEC(K)
be the set of all k-equiconcepts with respect to the formal
context K .

Theorem 1: Given a social network G, the k-clique detection
problem is equivalent to finding KEC(FC(G)).

Proof: Let Pk−clique be the k-clique detection problem
and PKEC(FC(G)) be the problem of finding KEC(FC(G)).
The above theorem is mathematically described as: Pk−clique ≡
KEC(FC(G)). Hence, we need prove it toward two di-
rections: 1) Pk−clique ⇒ PKEC(FC(G)) and 2) Pk−clique ⇐
PKEC(FC(G)).

1) (Pk−clique ⇒ PKEC(FC(G))): Given a social network
G, a k-clique contains vertices v1, v2, . . . , vk, for any
two vertices vi, vj , there exists an edge between them.
Since a k-clique is a subgraph, we can easily construct
the formal context using a modified adjacency matrix.
Obviously, the formal context of a k-clique is a ma-
trix of 1’s. We can extract a special such kind of con-
cept ({v1, v2, . . . , vk}, {v1, v2, . . . , vk}) from this formal
context, which satisfies X = B, X is the extent of this
special concept, and B is the intent of this special con-
cept. This special concept is actually a k-equiconcept;
hence, Pk−clique ⇒ PKEC(FC(G)).

2) (Pk−clique ⇐ PKEC(FC(G))): Due to Definition 11, we
know that all extracted k-equiconceptsKEC(FC(G))=
{(Xi, Bi)|i = 1, 2, . . . , r} and r is the number of
k-equiconcepts with respect to the formal contextFC(G).
Here, (Xi, Bi) is the ith k-equiconcept, Xi is the extent
of the ith k-equiconcept, and Bi is the intent of the ith
k-equiconcept and |Xi| = |Bi| = k. In a formal context
of social network G, both Xi and Bi consist of a subset of

Fig. 4. Concept lattice of social network g (the “red” nodes denote the
equiconcepts).

vertices, i.e., Xi = {v1, v2, . . . , vk}. Since Xi and Bi are
one of k-equiconcepts, it means that the vertices in Xi are
connected with the vertices in Bi. Hence, we can obtain a
subgraph (k-clique) based on the association between Xi

and Bi. For i = 1, 2, . . . , r, we can obtain all k-cliques.
Consequently, Pk−clique ⇐ PKEC(FC(G)).

Since we have already proved that Pk−clique ⇒ PKEC(FC(G))

and Pk−clique ⇐ PKEC(FC(G)), Pk−clique ≡ KEC(FC(G))
holds. �

Lemma 1: Let (X,B) be a k-equiconcept, the number of
derived (k − 1)-cliques from (X,B) is equal to Ck−1

k .
Proof: Since (X,B) is a k-equiconcept, all the vertices

in X are connected with the vertices in B. Let X ′ ⊆ X or B′ ⊆
B, and |X ′| = |B′| = k − 1. This problem is converted into a
combination problem about how many combination cases for
extracting X ′. Hence, there are Ck−1

k cases for X ′, i.e., we can
derive the (k − 1)-cliques from (X,B). �

Example 3: Let us continue Example 2, we can build the
concept lattice of the social network g according to Definition 8,
which is denoted as L(C(FC(g)),≤).

The visualization of L(C(FC(g)),≤) is shown in Fig. 4,
from which we can easily find the four equiconcepts marked
in red, i.e., ({1}, {1}), ({4, 7},{4, 7}), ({2, 5, 6}, {2, 5, 6})
and ({2, 3, 5}, {2, 3, 5}). In fact, in the social network g, these
equiconcepts correspond to 1-clique, 2-clique, 3-clique, and
3-clique, respectively. Moreover, we can derive more 2-cliques
from ({2, 5, 6}, {2, 5, 6}) and ({2, 3, 5}, {2, 3, 5}), such as
({2, 3}, {2, 3}), ({2, 5},{2, 5}), ({2, 6},{2, 6}), ({3, 5}, {3, 5}),
and ({5, 6}, {5, 6}). However, they are not concepts; they do not
appear in the concept lattice of social network g.

Theorem 2: Given a social network G, all k-clique detec-
tion is composed of the following parts: 1) basic cliques are
generated from the k-equiconcepts; 2) remaining cliques are de-
rived from the (k + 1)-equiconcepts, (k + 2)-equiconcepts,. . .,
M -equiconcepts. (M > k). M is the number of maximum
extent or intent of maximum equiconcepts.

Based on the above theorem of all k-clique detection, the
working process of Algorithm 1 is described as follows.
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Algorithm 1 FCA-Based k-Clique Detection Algorithm

Input:
G = (V,E);
Parameter k;

Output:
Set of k-cliques Γ

1: Initialize Γ = ∅
2: begin
3: Construct a formal context FC(G) by Definition 4
4: Build a concept lattice C(FC(G)) by invoking CLBuilder
5: end
6: for each concept (X,B) ∈ C(FC(G))
7: begin
8: if X = B and |X | = |B| = k
9: Γ ← Γ ∪ (X,B)
10: end
11: if X = B and |X | = |B| > k
12: for i = k + 1 to M do
13: begin
14: Γ ← Γ ∪Derived((X i, Bi))
15: end

Algorithm 2 CLBuilder

Input:
A formal context K;

Output:
Set of concepts conceptset

1: Initialize conceptset ← ∅
2: begin
3: conceptset ← BasicConcept(C);
4: AddConcept(C);
5: Enter(queue,conceptset);
6: while queue �= ∅ do
7: begin
8: (X,X↑) ← queue.concept;
9: SubNodes ← FindSubNodes (X,X↑)
10: if SubNodes �= ∅ then
11: for (Y, Y ↑) ∈ SubNodes do
12: (X,X↑).Edge ← (Y, Y ↑)
13: if SubNodes = ∅ then
14: (X,X↑).Edge ← (∅, D)
15: end
16: end

Algorithm 3 BasicConcept(C)

1: Initialize conceptset ← ∅
2: begin
3: for i = 1 to |V | do
4: for j = 1 to |V | do
5: if (c↓ij , cij) is not in conceptset then

6: conceptset ← conceptset
⋃
(c↓ij , cij)

7: return conceptset
8: end

Algorithm 4 AddConcept(C)

1: conceptset′ ← conceptset
2: conceptset′′ ← ∅
3: do
4: begin
5: for (X1, Y1), (X2, Y2) in conceptset′ do
6: begin
7: Y ← (Y1

⋂
Y2)

8: if (Y ↓, Y ) is not in conceptset then
9: begin
10: conceptset ← conceptset

⋃
(Y ↓, Y )

11: conceptset′′ ← conceptset′′
⋃
(Y ↓, Y )

12: end
13: end
14: conceptset′ ← concept′′

15: conceptset′′ ← ∅
16: end
17: until conceptset′ ← ∅
18: end

First, a social network G and parameter k are the inputs
of the whole algorithm; then, we initialize a set of k-cliques
with Γ (Line 1). After the initialization of algorithm, it goes
into the formal context construction and concept lattice gen-
eration codes part (Lines 2–5). Lines 6–10 insert the detected
k-equiconcepts (X,B) into Γ. The remaining set of k-cliques is
derived from other high-order equiconcepts and is inserted into
Γ (Lines 11–15). In the CLBuilder algorithm, we first initilize
the conceptset as an empty set (Line 1). Line 3 invokes the
algorithm BasicConcept(C) to obtain the basic concepts. Then,
AddConcepts is to obtain the extensive concepts (Line 4).
We store all the obtained concepts with a first-in–first-out
queue data structure (Line 5). Lines 6–16 deal with construct-
ing a concept lattice iteratively. Note that the algorithm of
FindSubNodes has been already presented in [20].

C. Time Complexity Analysis

This section discusses the time complexity of building the
formal concepts lattice. In the proposed formal context, the
number of objects is denoted with |V |, and the number of
attributes is also denoted with |V |. L is the number of all
concepts. L1 is the number of the basic concepts, and L2 is the
number of the added concepts. The time complexity analysis is
given as follows.

1) When a formal context is constructed, there exists a
matrix operation: The time complexity is |V |3.

2) The time complexity of obtaining basic concepts: The
time complexity of obtaining a basic concept is |V |2, and
the number of basic concepts is L1. Therefore, the time
complexity of obtaining all basic concepts is |V |2 × L1.

3) The time complexity of obtaining added concepts:
An added concept is regarded as resulting concept from
the intersection of two basic concepts. Hence, the time
complexity of obtaining an added concept is r × C2

|V |,
where r is the number of iterations. Because of L2 size

Authorized licensed use limited to: University of Exeter. Downloaded on May 18,2020 at 15:42:28 UTC from IEEE Xplore.  Restrictions apply. 



HAO et al.: K-CLIQUE COMMUNITY DETECTION IN SOCIAL NETWORKS BASED ON FCA 255

Fig. 5. Simple illustration of the extraction of the 2-clique communities.
(a) The approach based on a clique–clique overlap matrix. (b) FCA-based
approach.

of the added concepts, the time complexity of obtaining
the added concepts is r × C2

|V | ≤ r × |V |2 × |L2|.
In summary, the time complexity of the algorithm is Θ(|V |3 +
|V |2(L1 + L2)). As we know, L = L1 + L2. Therefore, the
time complexity is Θ(|V |3 + |V |2L).

D. FCA-Based k-Clique Community Detection

Here, we study how to detect the k-clique communities based
on the detection results of k-cliques in the previous section.
We first recall the existing approach for detecting k-clique
communities and then propose our detection algorithm based
on FCA. The k-clique communities for a given value of k are
equivalent to such connected clique components in which the
neighboring cliques are linked to each other by at least k − 1
common vertices.

A simple illustration of the above analysis is shown in
Fig. 5(a).

As shown in Fig. 5(a), 2-cliques are detected from the
original social network G; then, a clique–clique overlap matrix
is constructed. Then, a merged clique–clique matrix is gener-
ated. The elements “1” in this matrix indicate the connection
relation between two separated 2-cliques. Finally, two 2-clique
communities {2, 3, 5, 6} and {4, 7} are obtained.

One advantage of this method is that the clique–clique over-
lap matrix encodes all information necessary to obtain the com-
munities for any value of k; therefore, once the clique–clique
overlap matrix is constructed, the k-clique communities for all
possible values of k can be obtained very quickly. However, the
scalability of this method is very low. From the FCA point of
view, we can devise an efficient algorithm to discover all of the
k-clique communities.

Before we present the FCA-based k-clique community de-
tection algorithm, an important definition is given as follows.

Definition 12 (k-Intent Concept): For a formal context K =
(U,A, I), if a pair (X,B) satisfies X↑ = B, B↓ = X , and
|B| = k, then the pair (X,B) is a k-intent concept, where X
is called the extent of the k-intent concept, and B is called the
intent of k-intent concept. Moreover, let KIC(K) denote the
set of all k-intent concepts with respect to the formal contextK .

Theorem 3: The problem of k-clique community detection
is equivalent to finding the k-intent concepts and the extents of
each k-intent concepts just share at least k − 1 vertices.

Proof: As for a k-clique community, it is generated by
k-cliques that are the skeletons of the k-clique community.
Therefore, the skeleton of the k-clique community is regarded
as the intent of a certain concept. To guarantee the separation
of each k-clique community, a constraint of extents of each
k-intent concepts only sharing at least k − 1 vertices are given
to divide the k-clique communities each other. �

Let us continue to analyze Fig. 5(a); the intent of 2-clique
community {2, 3, 5, 6} is {2, 5}. In other words, this commu-
nity is generated based on the skeleton 2-clique {2, 5} with its
extent {2, 3, 5, 6}.

Based on the proposed theorem, the FCA-based k-clique
community detection algorithm works as follows.

Step 1 Given a social network G, generate a formal context
FC(G).

Step 2 Build a concept lattice about FC(G): C(FC(G)).
Step 3 Extract all the k-intent concepts with respect to the

formal context FC(G): KIC(FC(G)).
Step 4 Construct the extent–extent overlap matrix (extent

refers to B in the k-intent concept).
Step 5 The k-clique communities for a given value of k are

equivalent to such extent components in the k-intent
concepts in which the neighboring cliques are linked
to each other by at least k − 1 common vertices.
These components can be found by erasing every off-
diagonal entry smaller than k − 1 and every diagonal
element smaller than k in the matrix, replacing the
remaining elements by one and then carrying out
a component analysis of this matrix. The resulting
separate components are equivalent to the different
k-clique communities.

We provide the detailed detection procedure by a simple ex-
ample illustration. Let us continue the same example in Fig. 5(a).
As shown in Fig. 5(b), we first build a concept lattice of social
networkG. Then, we extract three 2-intent concepts (blue nodes)
({4, 7},{4, 7}), ({2, 3, 5, 6}, {2, 5}), and ({},{1, 7}). After that,
the extent–extent overlap matrix is generated. With a constraint,
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the extent–extent overlap matrix is modified as a “0-1” matrix.
Eventually, two 2-clique communities are detected.

Comparing Fig. 5(b) with Fig. 5(a), the advantages of the
proposed algorithm are concluded here: The proposed algo-
rithm can significantly reduce the dimensions of the overlap
matrix and the computational cost for overlapping elements in
the matrix. Because there is no need to select all k-cliques, we
just need extract the extent of k-intent concepts. Hence, the
execution steps are significantly reduced.

Based on the above theorem of all k-clique detection, we
present the detection algorithm, as shown in Algorithm 5.

Algorithm 5 FCA-Based k-Clique Community Detection
Algorithm

Input:
G = (V,E);
Parameter k;

Output:
Set of k-clique communities Ω

1: Initialize Ω = ∅, Υ = ∅
2: begin
3: Construct a formal context FC(G) by Definition 4
4: Build a concept lattice C(FC(G)) by invoking CLBuilder
5: end
6: for each concept (X,B) ∈ C(FC(G))
7: begin
8: if |B| = k
9: Υ ← Υ ∪ (X,B)
10: end
11: for each concept (X,B) ∈ Υ
12: begin
13: Construct the extent–extent overlapping matrix H with X
14: end
15: if (Hij > k − 1)
16: begin
17: Ω ← Ω ∪ ((X i) ∪Xj)
18: end

The working procedure of Algorithm 5 is described as
follows: First, a social network G and parameter k are the
inputs of the whole algorithm; then, we initialize a set of
k-clique communities with Ω and a set of k-intent concepts
with Υ (Line 1). After initializing the algorithm, it goes into
the formal context construction and concept lattice generation
codes part (Lines 2–5). Lines 6–10 insert the detected k-intent-
concepts (X,B) into Υ. Then, we construct the extent–extent
overlapping matrix H with X (Lines 11–14). While Hij >
k − 1, we just unify the extents together and store them into Ω
(Lines 15–18).

V. EXPERIMENTS

Here, we conducted experiments on four real-life networks
to evaluate the proposed approach. The goal of the experiments
was to investigate whether the proposed approach is efficient
for detecting the k-cliques and k-clique communities.

TABLE II
STATISTICS OF FOUR DATA SETS IN EXPERIMENTS

Fig. 6. Degree distributions (log–log scale) of four data sets. (a) Karate
data set. (b) Dolphin data set. (c) Jazz data set. (d) Yeast data set.

A. Experiment Setup

In this paper, four data sets of social networks are adopted
to evaluate the proposed approach. Some critical statistics of
the data sets are shown in Table II. Data set I is a classical
social network of friendships between 34 members of a karate
club at a United States university in the 1970s.1 Data set II
is a small-size data set on the social network of frequent
associations between 62 dolphins in a community living off
Doubtful sound, New Zealand. Data set III is obtained from
The Red Hot Jazz Archive digital database.2 It is a network of
Jazz musicians. Data set IV is a relatively large data set on yeast
protein interactions between proteins, in which the 1486 nodes
indicate the protein, and the 4406 edges indicate the interactions
between proteins.3

Fig. 6 presents the degree distributions of four data sets,
respectively. Obviously, they follow the power-law distribution
in general.

B. Experimental Results

Our experiments were run on a 2.83-GHz quad core machine
with 2-G memory. The experimental results are compared with
the existing works: CPM [10], GN [18], and CDPM [19], respec-
tively, to evaluate the effectiveness and efficiency of k-clique
detection and k-clique community detection.

1http://www-personal.umich.edu/mejn/netdata/
2http://www.redhotjazz.com
3http://depts.washington.edu/sfields/yp_interactions/index.html
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Fig. 7. Efficiency and effectiveness evaluation for four data sets. (a) The
construction time of formal contexts. (b) F -measure results for data sets.

1) Construction Time of Formal Context: As the input data
format of a social network is an undirected graph that contains
information on any two vertices and its edges between them,
we have to transform it into a formal context using a modified
adjacency matrix. The construction time of formal contexts for
four data sets is shown in Fig. 7(a). As shown in the figure, the
construction time of formal context is dramatically increasing
as the scale of social networks increases. Note that data set Yeast
costs lots of time for formal context construction compared with
other data sets due to its large-scale property.

2) Effectiveness Comparison Results: We run all algorithms
on four data sets. The F -measure is used to measure how well
each algorithm can find the k-clique community structure from
a social network. F -measure is calculated as follows:

F −measure =
2× recall× precision

recall + precision
(5)

where recall denotes the fraction of vertex pairs belonging
to the same k-clique community, which are also in the same
cluster, and precision is the fraction of vertex pairs in the same
cluster, which are also in the same k-clique community.

Fig. 8. Detection time of the proposed algorithm for data sets.

We calculate the F -measure for each data set with vari-
ous approaches. Fig. 7(b) shows the F -measure values for
various algorithms. Obviously, our approach has the largest
F -measure value compared with other existing algorithms.
As aforementioned, a good F -measure value can evaluate how
well an algorithm can find the k-clique community structure
from a social network. In other words, our approach can de-
tect the k-clique community structure very well in a social
network.

3) Detection Time: We provide the detection time of each
data set using the proposed detection algorithm. Due to the
impact of the system process, we simulate it five times and
calculate the average detection time of each data set with our
detection algorithm. Fig. 8 reveals an interesting conclusion: As
parameter k increases, the detection time is changed without a
special pattern. In particular, when we want to detect the bigger
k-clique communities, the detection time is less than the smaller
k-clique communities. In addition, as the scale of the data
set increases, the time consumed increases. In particular, the
average detection time of k-clique communities for the Yeast
data set is around twice that of other data sets.

4) Correlation Between k and Number of k-Clique Commu-
nities: This section presents a correlation between k and the
number of k-clique communities. In particular, we add one
more big size of data set, NetHEP,4 which is a collaboration
network between authors, to observe the correlation results
clearly. It contains 15 233 nodes representing the authors and
58 891 edges representing the collaboration between authors.
We examine and present the correlation between k and the
number of k-clique communities for all data sets in Fig. 9. In
this figure, we know that the number of k-clique communities
decreases with increasing k.

VI. CONCLUSION

This paper targets to detect the k-cliques and k-clique
communities from a social network for providing the com-
putational intelligence for CPSSs as well as enhancing the

4http://research.microsoft.com/en-us/people/weic/projects.aspx
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Fig. 9. Correlation between k and the number of k-clique communities.

interconnections among cyber, physical, and social spaces. We
have proposed the FCA-based k-cliques and k-clique com-
munity detection algorithms. To devise the proposed detec-
tion algorithms, a solution for the formal context construction
of a social network by using a modified adjacency matrix
has been provided first. We have presented the new con-
cepts k-equiconcepts and k-intent concepts and proved that
the k-clique detection problem is equivalent to finding the
k-equiconcepts, and the k-clique community detection problem
is equivalent to finding the k-intent equiconcepts in the concept
lattice of a social network. The proposed algorithm has been
evaluated using four data sets. Experimental results have shown
that the proposed algorithm has a higher F -measure value
compared with other previous works. In addition, a correla-
tion between k and the number of k-clique communities was
investigated.

As the rapid growth of online social network sites continues,
the community intelligence from social networks is widely
used everywhere. From a social sustainable point of view, we
plan to develop similar techniques in other urban sustainable
applications, e.g., targeted marketing, and E-health field, to
confirm that our approach is universally applicable in various
domains.
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