
The Journal of Systems and Software 134 (2017) 138–152

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Multi-cloud service composition using Formal Concept Analysis

Haithem Mezni a , ∗, Mokhtar Sellami b

a SMART Lab/University of Jendouba, Jendouba, Tunisia
b Higher Institute of Technological Studies of Jendouba/RIADI Lab, Tunisia

a r t i c l e i n f o

Article history:

Received 17 February 2017

Revised 4 July 2017

Accepted 8 August 2017

Available online 9 August 2017

Keywords:

Cloud computing

Multi-cloud

Service composition

Lattice theory

Formal concept analysis

a b s t r a c t

Recent years have witnessed a rapid growth in exploiting Cloud environments to deliver various types of

resources as services. To improve the efficiency of software development, service reuse and composition

is viewed as a powerful means. However, effectively composing services from multiple clouds has not

been solved yet. Indeed, existing solutions assume that the services participating to a composition come

from a single cloud. This approach is unrealistic since the other existing clouds may host more suitable

services. In order to deliver high quality service compositions, the user request must be checked against

the services in the multi-cloud environment (MCE) or at least clouds in the availability zone of the user.

In this paper, we propose a multi-cloud service composition (MCSC) approach based on Formal Concept

Analysis (FCA). We use FCA to represent and combine information of multiple clouds. FCA is based on

the concept lattice which is a powerful mean to classify clouds and services information. We first model

the multi-cloud environment as a set of formal contexts. Then, we extract and combine candidate clouds

from formal concepts. Finally, the optimal cloud combination is selected and the MCSC is transformed

into a classical service composition problem. Conducted experiments proved the effectiveness and the

ability of FCA based method to regroup and find cloud combinations with a minimal number of clouds

and a low communication cost. Also, the comparison with two well-known combinatorial optimization

approaches showed that the adopted top-down strategy allowed to rapidly select services hosted on the

same and closest clouds, which directly reduced the inter-cloud communication cost, compared to exist-

ing approaches.

© 2017 Published by Elsevier Inc.

fi

(

p

a

f

a

s

t

t

T

s

z

i

b

l

u
1. Introduction

Service-oriented computing and cloud computing have a recip-

rocal relationship that allows to provide consumers with the “com-

puting of services” and the “services of computing” (Wei and Blake,

2010). Cloud environment becomes a natural choice to deliver var-

ious types of resources as services.

To satisfy user needs, Cloud service-based systems are often de-

signed by invoking several providers. Cloud service composition al-

lows integrating various existing cloud resources into a set of inter-

acting services to deliver Cloud-based solutions that meet specific

quality criteria (Jula et al., 2014).

Since 2009, several service composition methods have been

proposed in the context of Cloud computing. However, most of

them assume that all services involved in a composition come

from a single cloud, instead of finding services from multiple avail-

ability zones. This assumption is unrealistic and limits the bene-
∗ Corresponding author.

E-mail addresses: haithem.mezni@gmail.com , haithem.mezni@fsjegj.rnu.tn (H.

Mezni), sellamimokhtar@yahoo.com (M. Sellami).

f

I

c

n

http://dx.doi.org/10.1016/j.jss.2017.08.016

0164-1212/© 2017 Published by Elsevier Inc.
ts received from other clouds that might deploy better services

 Microsoft Communications & Media Industries, 2013). For exam-

le, some clouds are well suited for services that are frequently

ccessed by cloud consumers who require a certain data trans-

er rate. Also, the services delivered to a consumer may belong to

 Cloud infrastructure that does not satisfy certain requirements,

uch as security and compliance requirements or business and

echnical needs.

Multi-cloud approach refers to cloud services consumed

hrough several cloud providers (Ardagna et al., 2012; Petcu, 2011).

o guarantee high availability and quality levels for their offered

ervices and to mitigate risk from data loss or downtime, organi-

ations often deploy their services using several cloud providers

n their availability zones (Venkat, 2016). This multi-cloud strategy

rings many benefits such as improved enterprise performance and

ower costs. This also permits to avoid “vendor lock-in” and makes

se of different infrastructures to offer the same services for dif-

erent users’ profiles. That is why leading cloud providers, such as

BM and Microsoft, decided to develop platforms and address the

hallenges of multi-cloud service provisioning (Microsoft Commu-

ications & Media Industries, 2013).

http://dx.doi.org/10.1016/j.jss.2017.08.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.08.016&domain=pdf
mailto:haithem.mezni@gmail.com
mailto:haithem.mezni@fsjegj.rnu.tn
mailto:sellamimokhtar@yahoo.com
http://dx.doi.org/10.1016/j.jss.2017.08.016

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 139

c

c

s

p

b

t

t

b

s

c

a

m

o

m

j

t

t

c

r

r

i

t

c

t

e

c

B

w

c

e

r

t

s

t

S

b

t

a

t

t

t

s

2

t

c

p

c

p

T

p

u

a

T

q

T

p

T

e

r

p

g

c

c

i

c

u

t

p

v

v

c

c

t

t

c

o

c

f

t

t

q

t

t

n

t

r

c

c

t

fi

m

c

p

m

c

e

t

c

m

n
However, combining the distributed services across multiple

louds raises several issues, such as the inter-cloud communication

ost, the increase of financial charges, the security and privacy is-

ues, etc. Hence, a challenging task is to minimize the number of

articipating clouds while considering services’ constraints.

The goal of this work is to offer optimal service compositions

y considering multiple cloud providers. The major difference be-

ween our approach and existing solutions is that we, not only aim

o reduce the number of clouds that participate to a composition,

ut also the number of service providers within the minimal set of

elected clouds. Another difference is to consider the inter-clouds

ommunication time so that to reduce the total execution time of

 composed service.

In this paper, a solution based on Formal Concept Analysis (FCA)

ethod is proposed to find a minimal set of clouds that host the

ptimal service composition, while reducing the inter-cloud com-

unication cost. We use lattice theory to regroup multi-cloud ob-

ects (i.e. clouds, providers, services) into small clusters based on

heir common properties. Then, we exploit the hidden associa-

ions between these clusters to extract valuable information (e.g.

ommon hosting clouds, communication costs) for effectively and

apidly finding the best combination in the multi-cloud space. The

egrouping capabilities of FCA will permit to group services accord-

ng to their providers and also to group those providers that belong

o the same clouds.

FCA has been adopted to solve several research problems in-

luding Web service selection (Fenza and Senatore, 2010), informa-

ion retrieval (De Maio et al., 2012), ontology construction (Weng

t al., 2006), knowledge extraction (Poelmans et al., 2013a), ma-

hine learning (Kuznetsov, 2004), etc. In the context of Cloud and

ig data environments, FCA has been successfully applied to deal

ith large-scale problems, such as stream processing in smart

ities (De Maio et al., 2017), modelling of big medical data (Hao

t al., 2016) and continuous k-nearest neighbor search in complex

oad networks (Ferchichi and Akaichi, 2016). This successful adop-

ion suggests that FCA may be a good candidate to the multi-cloud

ervice composition problem.

The main contributions of this paper are as follows:

• Modelling the multi-cloud environment using concept lattice the-

ory: we describe the MCE using two types of formal contexts,

from which a set of complete concept lattices is generated to

group the providers according to their offered services, and

to express the relations between providers and their hosting

clouds.
• Defining algorithms for the extraction of candidate providers and

clouds. An algorithm is also defined to determine the optimal

cloud combination.
• Designing a system model that allows exploring the multi-cloud

base and delivering the minimal set of providers and clouds

that satisfy the user request.
• Implementing the FCA-based service composition approach and

experimentally evaluating the quality of produced solution.

The rest of this paper is organized as follows. Section 2 details

he related works to the multi-cloud service composition (MCSC).

ection 3 formulates the MCSC problem. Section 4 provides the

asic notions of Formal Concept Analysis. Section 5 shows how

he MCE is modelled using FCA. Section 6 presents our approach

nd the way FCA is applied to the multi-cloud service composi-

ion problem. Section 7 provides a theoretical complexity study of

he proposed MCSC method. Section 8 presents the implementa-

ion details, the conducted experiments and a discussion of the re-

ults. Section 9 is devoted to the conclusion and the future work.
. Related work

A common assumption among existing approaches was that all

he services that participate to a composition belong to the same

loud. Extensive surveys have been presented for Web service com-

osition (Sheng et al., 2014) and service composition in single

louds (Jula et al., 2014). However, very few approaches have been

roposed to deal with service composition across multiple clouds.

he collected works from the literature do not exceed eight ap-

roaches, which will be discussed in this section.

The first work was proposed by Zou et al. (2010) . The authors

se the tree structure to model the multi-cloud base (MCB). Then,

 minimum request set is returned by searching the MCB tree.

o select the optimal cloud set with a feasible composition se-

uence, the authors proposed three cloud combination algorithms.

he “All Clouds Combination” algorithm considers all clouds as in-

uts for the composition and enumerates all possible solutions.

his method locates a service composition sequence in a short ex-

cution time, but using a high number of clouds. The second algo-

ithm “Base Cloud Combination” recursively finds a service com-

osition in the whole cloud combinations set. However, this al-

orithm requires a high execution time to find the optimal cloud

ombination. The last algorithm aims to determine a near-optimal

loud combination based on an approximation algorithm. However,

t remains time consuming and it may fail to find the optimal

loud combination because it obtains the combination of clouds

sing the services files, which could constrain the combinations.

In Gutierrez-Garcia and Sim (2013) , an agent-based approach

o composing services in multi-cloud environments has been pro-

osed. Gutierrez-Garcia and Sim considered various types of ser-

ices (e.g., one-time virtualized service, persistent virtualized ser-

ices, vertical and horizontal services). They used a semi-recursive

ontract net protocol and endowed the composition agents with

atalogs containing information about cloud participants. Despite

he promising empirical results, this solution inherits the limita-

ions of the agent-based distributed approach (i.e. processing and

ommunication costs).

Collective intelligence was adopted by Yu et al. (2015) . Based

n Ant Colony Optimization (ACO), the authors used two cloud

ombinations algorithms: the Greedy-WSC and the ACO-WSC (ACO

or web service composition) to obtain a valid services composi-

ion that uses the minimum number of clouds. In the first one,

hey aim to select the cloud that contains the high number of re-

uired services. Whereas in the second, artificial ants try to find

he optimal graph’s path according to the pheromone amount and

he heuristic information on the edges, knowing that each graph’s

ode represents one cloud and each edge is a connection between

wo different clouds.

Kurdi et al. (2015) propose a combinatorial optimization algo-

ithm for cloud service composition (COM2) that aims to efficiently

ompose services with small numbers of examined services and

ombined clouds. The proposed algorithm selects the cloud with

he maximum number of services to increase the possibility of ful-

lling service requests with minimal overhead costs.

To deal with various versions of quality of service (QoS) infor-

ation revealed in different mobile CPS applications and to reduce

ost and time of consumption, the authors in Wu et al. (2014) pro-

ose a cloud service selection method named CSSM. It aims at

ining qualified versions of cloud services for cross-cloud service

omposition. The proposed approach takes the utility value as the

valuation index and aims at finding an optimal trusted composi-

ion from a Cloud services set using an extended top-k iteration

omposition process.

To support cross-platform service invocation in cloud environ-

ent, Qi et al. (2012) presented a QoS-aware composition method

amed LOEM. This method aims at improving the quality of pro-

140 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

3

d

o

t

i

f

E

D

…

o

p

c

w

s

s

E

t

t

o

a

n

g

s

g

A

p

b

D

g

s

b

W

o

b

i

4

a

s

a

d

w

b

i

D

A

a

t

a

D

K

m
vided compositions when a large number of composite solutions is

available in cloud environment. Also, a decision-making method is

proposed to determine whether a QoS-aware WSC problem has a

QoS qualified composite solution. Although the proposed approach

provided near-optimal compositions, the time complexity of LOEM

is still exponential, which cannot deliver satisfactory results in case

of real-time user requests.

To deal with privacy issues in cross-cloud service composition,

an enhanced history record-based service optimization method,

named HireSome-II, has been developed by Dou et al. (2015) for

processing big data applications. To enhance the credibility of a

composition plan, the authors propose to evaluate a service by

some of its QoS history records, rather than its advertised QoS val-

ues. Also, the k-means algorithm is introduced into HireSome-II as

a data filtering tool to select representative history records.

Parallel programming models were also adopted to optimize

service composition in large-scale cloud mashup applications.

Zhang et al. (2016) propose a skyline query processing method

that aims to construct multi-cloud mashup applications based on

the quality of mashup services and quality of user experience. To

achieve the skyline selection goals, the authors use the MapRe-

duce parallel programming model in order to process the differ-

ent mashup cloud platforms. A partitioning method based on block

elimination is also proposed to reduce the search space and opti-

mize the mashup composition scheme.

Other related issues have been addressed in the context of

multi-cloud environments. Jrad et al. (2015) studied SLA match-

ing of scientific workflows properties in multiple Clouds. They pro-

posed an ontological model for the semantic description of com-

posite multi-cloud services. Also, a utility-based genetic algorithm

was proposed to select optimal Cloud resources based on the

matching between user requirements and Clouds properties.

In Kritikos and Plexousakis (2015) , Kritikos and Plexousakis

aim to design multi-cloud applications through the composition of

Cloud services. The authors propose an abstract deployment model

to specify a set of requirements, including resource, QoS, location,

security and cost. The model is then concretized by considering

the set of cloud provider offerings and internal SaaS realizations of

the requester organization. To optimize the design of multi-cloud

applications, the authors also combine a constraint satisfaction op-

timization problem (CSOP) technique and Constraint Programming

with interval arithmetics. Choco and Ibex are exploited as con-

straint solving engines.

From the above discussed works, we came to the following con-

clusions:

• None of the existing approaches have considered the com-

munication cost between clouds and only focus on reducing

the number of clouds. Our approach solves this problem by

modelling the relations between clouds and by considering

the inter-clouds communication in the selection of the optimal

clouds.
• Existing approaches only examine the clouds with high num-

ber of services to reduce the composition time, while it is im-

portant to consider the services in all the candidate clouds dur-

ing the composition process. Our approach exploits the power-

ful grouping capabilities of Formal Concept Analysis to extract

the relevant providers, which will be used after to determine

the minimal cloud set.

Based on the above discussions, our work aims to resolve the

major issues related to exploring the multi-cloud environment as

well as reducing, not only the number of clouds, but also the inter-

cloud communication cost. This goal is guarantee by exploiting the

strengths of Formal Concept Analysis as a powerful mean of clus-

tering the clouds and services related information.
. Problem formulation

In this work, the problem of multi-cloud service composition is

efined as follows:

“Given a set of clouds hosting the services offered by a number

f providers, the goal is to determine the minimal and cost effec-

ive sub-set of clouds, from which an optimal service composition

s selected”.

The set of clouds, also called multi-cloud environment (MCE),

orms a big distributed container of services and their related data.

ach cloud is an independent service repository.

efinition 1 (Multi-cloud environment). a MCE is a set C = { C 1 , C 2 ,

, C N } of Clouds, where C i (1 ≤ i ≤ N) is a cloud that hosts a set P

f providers, P = { P i 1 , P i 2 , …, P iM

}, where P ij (1 ≤ j ≤ M) is the j th

rovider in cloud C i . A provider may belong to more than one

loud. A provider offers a set S of services, S = { S j 1 , S j 2 , …, S jL },

here S jk (1 ≤ k ≤ L) is the k th service offered by provider P j .

To model the communication network between clouds, we con-

ider the MCE as a directed acyclic graph G = (V, E), where V is the

et of vertices (clouds in our case) and E ∈ V × V is the set of edges.

 denotes the set of communication paths transmitting informa-

ion between two Clouds C i and C j . The cost of each communica-

ion path is represented by E i j : E → R

+ .
In this work, a composition of selected services is a sequence

f tuples, W = { 〈 S 1 , C 1 〉 , 〈 S 2 , C 2 〉 , …, 〈 S k , C k 〉 }, where S 1 , S 2 , …, S k
re the services involved in the composition, and C 1 , C 2 , …, C k de-

ote the minimum Cloud set. Based on this statement, we may re-

ard the selection of optimal cloud combination as the traditional

ub-graph matching problem (Cheng et al., 2008), where the whole

raph is the MCE and the sub-graph is the minimum set of Clouds.

s a result, a service query is used to determine the candidate

roviders which will serve to extract the sub-graphs of cloud com-

inations.

efinition 2 (Service-query). A user request S r is denoted by a

raph G r = (S ’, E ’), with S ’ = { S 1 ’, S 2 ’, …, S n ’} is a set of requested

ervices, and E ’ = { E 1 ’, E 2 ’, …, E m

’} is the set of possible data flows

etween requested services. There exists a service composition

 = (S, CP) in the multi-cloud repository, which satisfies S r if and

nly if S ′ ∈ S and E ′ ∈ CP , where CP denotes a communication paths

etween two clouds or within a same cloud.

The next section presents the basic notions of FCA and their

ntended used in the multi-cloud service composition approach.

. Applying Formal Concept Analysis

As a branch of lattice theory, Formal Concept Analysis (FCA) is

 clustering technique for knowledge representation, data analy-

is, and information management (Poelmans et al., 2013b). FCA is

 lattice-theory paradigm for discovering conceptual structures in

ata. Since these structures allow the extraction of dependencies

ithin the data, we exploit FCA to discover the hidden relations

etween clouds and services related information.

The basic structures of FCA are presented by the following def-

nitions:

efinition 3 (Formal context). A formal context is a triple K = (O,

, R) denoting respectively the set of objects, the set of attributes,

nd the set of binary relations between the objects and the at-

ributes (R = O × A). An object “o ” has the attribute “a ” if o and a

re in relation R (denoted by oRa).

efinition 4 (Formal concept). A formal concept of the context

 = (O, A, R) is a pair of sets (E, I) such that E ⊆ O and I ⊆ A . A for-

al concept is a cluster with two parts: the Extent part E groups

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 141

Table 1

Example of multi-cloud environment and its providers/services distribution.

Clouds C1 C2 C3 C4 C5

Providers P1 P2 P3 P4 P5 P5 P8 P9 P2 P3 P7 P6 P8 P10 P3 P4 P6

Services 5 6 6 4 4 4 11 3 6 4 5 2 11 4 6 4 2

t

a

d

u

s

c

D

c

o

s

O

h

p

M

c

t

f

a

h

t

s

T

w

r

5

C

(

v

a

i

i

c

o

p

r

s

d

C

t

f

d

f

a

t

p

e

Table 2

Formal context K MC of providers in all the clouds.

MCE C1 C2 C3 C4 C5

P1 1 0 0 0 0

P2 1 0 1 0 0

P3 0 0 1 0 1

P4 0 0 0 0 1

P5 0 1 0 0 0

P6 0 0 0 1 1

P7 0 0 1 0 0

P8 0 1 0 1 1

P9 0 1 0 0 0

P10 1 0 0 1 0

D

c

s

t

a

‘

p

D

t

s

T

b

a

o

s

b

C

t

c

m

m

d

s

h

I

t

D

w

g

o

2

f

n

o

b

t

c

1 http://www.iro.umontreal.ca/ ∼galicia/ .
he objects that share a sub-set of common attributes. These latter

re stored in the Intent part I of the formal concept. Elements in I

enote the common attributes shared by all the objects in E .

Given a formal context K , we derive a set of “formal concepts”

sing derivation operators. The set of all concepts is ordered by the

ub-concept/super-concept relation to make a complete hierarchi-

al structure called “concept lattice”.

efinition 5 (Derivation operators). Let K = (O, A, R) be a formal

ontext and O ’ ⊆ O be a set of objects. We define A ’ = { a ∈ A | ∀ o ∈ O ’:

Ra}, i.e. A ’ is the set of all attributes that all objects in O ’

hare. Analogously, let A ” ⊆ A be a set of attributes. We define

 ” = { o ∈ O | ∀ a ∈ A ”: oRa}; i.e. O ” is the set of those objects that

ave all attributes from A ”.

The major motivation behind using FCA in the multi-cloud com-

osition problem is its mathematical foundations and soundness.

oreover, FCA is based on rich stack of incremental algorithms to

onstruct and modify concept hierarchies.

The “lattice” structure in FCA depicts the notion of concepts

hat regroup the objects sharing the same attributes. In the same

ashion, we use FCA to regroup clouds that host the same providers

nd providers that offer similar services. Also, using the Galois sub-

ierarchy (GSH) allows us to reduce the time devoted to compute

he minimal set of Clouds that covers the user query. One of the

trengths of GSH is its ability to eliminate redundant concepts.

his allows having optimal clusters of cloud objects (e.g., providers

ithin same cloud(s), services offered by the same provider) and

educing the search space of minimal cloud set.

. Characterizing multi-cloud environment using Formal

oncept Analysis

The correct characterization of multi-cloud environment objects

clouds, providers, services) is the first step towards effective ser-

ice composition. For this purpose, FCA is adopted to represent and

nalyse the services data in each Cloud. Such data are represented

n the form of formal contexts.

We modelled the MCE as a set of formal contexts. Each cloud

s described as a formal context (FC), from which a complete con-

ept lattice is generated to group the providers according to their

ffered services. An additional formal context is also created to ex-

ress the relations between providers and their hosting clouds.

The first FC called “Multi-Cloud Formal Context” (denoted K

MC)

epresents a complete multi-cloud environment and consists of a

et of providers with their hosting clouds. This formal context in-

icates whether a provider P deploys its services S on the cloud

 or not. The second formal context K

C called “Cloud Formal Con-

ext” describes the relationships between providers and their of-

ered services.

In many cases, service providers may publish their services in

ifferent clouds. Hence, a provider may belong to more than one

ormal context. Given N clouds, the information regarding services

nd their corresponding providers are modelled in N formal con-

exts K

C , where each one represents a complete cloud. Candidate

roviders extracted from these formal contexts are, then, used to

xtract candidate clouds from the multi-cloud formal context K

MC .
efinition 6 (Multi-cloud formal context). A multi-cloud formal

ontext is a triple K

MC = (P, C, R) where P is a set of objects repre-

enting service providers, and C is the set of attributes representing

he hosting clouds. The binary relation R = P × C indicates whether

 provider belongs to a cloud or not. An object ‘ p ’ has an attribute

 c ’ if p and c are in relation R (denoted by pRc). This means that

rovider ‘ p ’ deploys its services in the cloud ‘ c ’.

efinition 7 (Cloud formal context). A cloud formal context is a

riple K

C = (S,P,R) where S is a set of objects representing available

ervices, and P is the set of attributes representing the providers.

he binary relation R = S × P indicates whether a service is offered

y a provider or not. An object ‘ s ’ has an attribute ‘ p ’ if s and p

re in relation R (denoted by sRp). This means that service ‘ s ’ is

ffered by the provider ‘ p ’.

Take the example of multi-cloud environment in Table 1 . 50

ervices with different functional and QoS capabilities are offered

y 10 providers, which are hosted in 5 clouds. For example, the

loud C1 hosts 5 providers that offer together 25 services. Note

hat some providers may deploy their offered services on several

louds (e.g., providers P2, P3, P4, P5, P6, and P8).

Based on the above example, the multi-cloud environment is

odelled using five Cloud formal contexts K

C and a Multi-cloud for-

al context K

MC . From these formal contexts, we use FCA to pro-

uce hierarchically ordered clusters of providers offering the same

ervices (see cloud lattice L C in Fig. 2) and clusters of providers

osted in the same cloud (see multi-clouds’ lattice L MC in Fig. 1).

n the literature, there are several algorithms that can be used

o build the lattices L MC and L C . Examples include Bordat, Godin,

owling, Next closure, Faster, etc. (Kumar and Singh, 2014). In our

ork, we use Bordat algorithm offered with Galicia 1 tool. This al-

orithm is suitable for large formal contexts and performs well

n contexts of low and average density (Kuznetsov and Obiedkov,

002). In a multi-cloud setting, providers cannot deploy their of-

ered services in all (or a large number of) clouds due to the fi-

ancial charges and the complexity of managing the huge number

f services. Hence, the multi-cloud formal context is characterized

y an average density.

Based on the MCE example in Table 1 , the following formal con-

ext describes the relations between providers and their hosting

louds (Table 2).

http://www.iro.umontreal.ca/~galicia/

142 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

Fig. 1. Concept lattice of providers in all the clouds.

Table 3

Formal context K C of providers and their offered services in the first cloud.

Cloud 1 P1 P2 P3 P4 P5

S1 1 0 1 0 0

S2 0 1 1 1 0

S3 0 0 1 0 1

S4 1 0 1 0 1

S5 0 1 0 0 0

S6 1 1 0 1 0

S7 0 0 1 0 1

S8 1 1 1 1 0

S9 0 1 0 0 1

S10 1 1 0 1 0

b

o

r

t

E

p

1

s

p

c

6

c

m

w

p

t

t

t

m

c

t

t

The set of formal concepts in Fig. 1 is derived from the above

formal context to form a complete lattice L MC of the multi-cloud

environment. For example, the second formal concept {P1, P10, P2,

C1} in L MC shows that Cloud 1 hosts the services of three providers.

The extent part in the concept {P3, C3, C5} consists of two clouds

hosting the same provider. This means that two candidate cloud

combinations are available if the provider P3 is involved in a ser-

vice composition request. Regarding the formal concept {P6, P8, C4,

C5}, the extent part shows that both providers P6 and P8 deploy

their services in the same clouds {C4, C5} specified in the Intent

part of the concept.

One of the strength of FCA is its ability to group information

in a way that allows deriving new knowledge. Indeed, the Intent

parts in the lattice of services allow us to choose between sev-

eral providers that offer the same service. In the same way, the In-

tent parts in the lattice of clouds allow to select one of the clouds

that host the same provider, by taking into account the user’s con-

straints, such as the availability zone and the required service exe-

cution time.

Take the first cloud in the MCE example. Table 3 shows a for-

mal context describing the relations between services and their

providers within this cloud. The entries in this formal context (i.e.
inary relations) indicate whether a service is offered by a provider

r not.

From the above formal context, the derived lattice L C
1

in Fig. 2

epresents the hierarchy of concepts regrouping services according

o their providers. For example, in the eleventh formal concept the

xtent part consists of 3 services {S6, S8, S10}, while the Intent

art comprises 3 providers {P1, P2, P4} offering those services. The

0th concept {S9, P2, P5} shows that two providers offer the same

ervice S9.

Next, we describe the process of extracting candidate service

roviders and candidate clouds in order to find the optimal service

omposition.

. FCA-based multi-cloud service composition

To reduce the communication costs between web services that

ome from different clouds, we aim in this paper to find the mini-

al combination of clouds that host the best service composition,

hile satisfying the constraints specified in the user request. We

resent three algorithms for selecting a feasible cloud combina-

ion that uses a minimum number of clouds, and for evaluating

he candidate service compositions in the optimal cloud combina-

ion.

An overview of the proposed multi-cloud service composition

odel is illustrated in Fig. 1 . This figure shows that the input of a

omposition problem is a service request and a set of formal con-

exts representing the multi-cloud repository. The output is an op-

imal service composition.

The steps of our approach are briefly described as follows:

• Step 1 (Extraction of candidate providers): this step extracts, from

each cloud lattice, the candidate providers that offer the re-

quested services. Each set of providers that satisfy the user re-

quest is used in the next step to determine the possible cloud

combinations.

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 143

Fig. 2. Concept lattice of services available in Cloud 1.

a

6

t

t

e

s

L

i

S

t

r

c

c

p

p

p

t

c

v

E

p

t

c

t

d

c

p

c

a

p

e

t

6

t

B
• Step 2 (Construction of candidate cloud combinations): in this

step, the lattice that represents the relations between service

providers and their hosting clouds is used to filter the candi-

date clouds with respect to the selected providers in step 2.

Since a provider may belong to one or more clouds, several

combinations of clouds may contain the valid service compo-

sition. Those combinations are constructed according the com-

munication links in the MCE.
• Step 3 (Selection of optimal clouds): this step consists of select-

ing the appropriate and minimal cloud set. This is achieved by

considering the cloud combination’s size and the inter-clouds

communication cost.
• Step 4 (Service composition): in this final step, the multi-cloud

service composition problem is transformed into a classical ser-

vice composition. An algorithm is used to select the suitable

services from the optimal cloud set.

The following sub-sections give more details about each of the

bove steps.

.1. Extraction of candidate providers

This step exploits the regrouping capabilities of FCA to run

hrough the formal concepts in each Cloud lattice L C and to extract

he useful concepts. To do that, the algorithm “Candidate providers’

xtraction” takes as input a user request S r containing the required

ervices, and N lattices L C
i

of services (1 ≤ i ≤ N), where each lattice

C
i

represents the set of services and their providers hosted in the

 th cloud. The output of the algorithm is M sets of service providers

P ij (1 ≤ j ≤ M), where each set represents the j th possible combina-

ion of providers in the i th cloud, that may together meet the user

equest.
We adopt a top-down approach to ensure that the formal con-

epts with the highest Extent sizes in each lattice L C are pro-

essed firstly. This decreasing sorting helps to rapidly identify the

roviders with the greater number of services. The “Candidate

roviders’ extraction” algorithm is described as follows.

The algorithm starts the process of determining the candidate

roviders in each cloud by running through the corresponding lat-

ice L C
i

(line 3). For each concept C j in the lattice, the algorithm

hecks if the Extent part contains some or all of the required ser-

ices (lines 6 and 7). Then, the services found in the j th concept’s

xtent are added to the set S a of found services (line 8), and the

roviders (Intent part of C j) that offer these services are stored in

he vector V prov (line 9).

The search process is repeated until the selected providers

over all the required services, that is, until meeting the condi-

ion S a = S r (line 11). At this stage of the algorithm, the candi-

ate providers in V prov are combined together (line 12), in order to

onstruct the possible solutions that will be stored in the output

roviders’ sets PS (line 13).

Since the remaining concepts in the lattice L C
i

may contain other

andidate service providers, the whole process is continued (line 6)

fter initializing the used sets (S a and V prov). The whole routine is

erformed for each cloud Cl i (line 17).

In what follows, we show how the possible providers’ sets are

xploited to extract the candidate cloud combinations and to select

he optimal clouds.

.2. Construction of candidate cloud combinations

This step of the multi-cloud service composition process aims

o regroup the clouds that may together offer the required services.

y evaluating each cloud combination, we may determine the op-

144 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

Table 4

Matrix of inter-cloud communication.

C1 C2 C3 C4 C5

C1 0 510 280 110 80

C2 510 0 320 870 180

C3 280 320 0 930 1050

C4 110 870 930 0 120

C5 80 180 1050 120 0

C

c

i

t

5

c

c

n

n

n

w

t

b

m

b

l

b

c

o

α

p

t

f

i

v

t

t

r

t

c

t

t

t

b

f

t

m

c

m

o

o

W

m

h

t

s

c

a

L

t
timal set of clouds from which the suitable services are delivered

to the user.

The algorithm below takes as input a multi-cloud lattice L MC

and M sets of service providers PS i (1 ≤ i ≤ M), each one offers a

possible composition of services. The output is a set CCS of cloud

combinations; each one represents the group of clouds that may

meet the user request.

We adopt a top-down approach to ensure that the formal con-

cepts in the multi-cloud lattice are sorted in decreasing order of

the Extent size. This decreasing sorting helps to rapidly identify

the clouds with the greater number of providers, which allows re-

ducing the number of participating clouds. The main steps of the

proposed algorithm are summarized as follows.

For each group of candidate providers PS i (1 ≤ i ≤ M), the goal of

the algorithm is to determine the combinations of clouds that host

these providers. To do that, the algorithm runs through the multi-

cloud lattice L MC (line 5) and checks if the Extent part of the cur-

rent concept C j in the lattice contains some or all of the candidate

providers (line 6). In this case, the corresponding hosting clouds,

which belong to the Intent part of C j are stored in the vector V comb

of candidate clouds (line 7). If no cloud is identified in the Intent

part, the next formal concept is checked until appropriate clouds

are obtained. Once located, they are added to the vector V comb .

The search iteration of candidate clouds is broken when all the

candidate providers are found (line 10). At this stage of the algo-

rithm, the candidate clouds in V comb are combined together (line

12), in order to construct the possible cloud combinations, that will

finally be stored in the output set CCS (line 13).

The last step of our approach is devoted to the selection of the

optimal cloud combination. This is achieved by considering several

criteria, such as the number of clouds, the number of providers,

the communication time between clouds, the availability zone of

the user, etc.

6.3. Selection of optimal cloud combination

As mentioned in Section 2 , none of the existing approaches

have considered the communication cost between clouds as they

only focus on reducing the number of clouds. To determine the

cost of communication between two clouds, it is important to

consider various information, including data transfer time, pricing

models, security constraints, Cloud availability zones, etc. Modeling

the MCE with all of these information, using graph structure, is a

natural and suitable choice, as defined below:

Definition 8 (Inter-cloud communication graph). A weighted di-

rected graph G = (C, A, W) represents the communication links be-

tween clouds. C represents the set of vertices (i.e. clouds in the

MCE). A denotes the set of undirected edges connecting the ver-

tices if, and only if, there exists a communication link transmitting

information from c x to c y , where c x and c y ∈ C . For every pair (c x ,

c y) of clouds that communicate with each other, we add an arc a (x,

y) to A with a weight w (x, y) representing the communication cost

between the two clouds.

In this work, for simplicity reasons, the graph G is transformed

into a matrix view (see Table 4), while a more enriched inter-cloud

graph modelling including other useful information (e.g. security

constraints, data transfer time, etc.) is left to the future work. For

this purpose, entries of the matrix in Table 4 are simple values

denoting the inter-cloud communication times (in milliseconds).

To determine the optimal cloud set, the algorithm below takes

as input a set CCS of candidate cloud combinations and the matrix

M of inter-cloud communications. The output is a cloud combina-

tion CC best with a minimal size N and a minimal total cost T .

Initially, the minimal score S min is set to a constant value (S MAX)

denoting the maximal score (line 2). For each cloud combination
C i (line 3), the algorithm runs through the matrix of inter-cloud

ommunication to get the set E of communication links within the

 th cloud combination (line 4). This set is then used to compute

he total communication cost of CC i (see formula
∑ | E|

j=1
cos t j in line

). E is the set of edges representing communication links between

louds in combination CC i . For example, the j th edge (1 ≤ j ≤ |E|)

orresponds to the j th pair (c x , c y) of clouds C x and C y that commu-

icate with each other. Hence, cost j in line 5 denotes the commu-

ication cost between the two clouds C x and C y in the j th commu-

ication link (the communication cost is represented by the weight

 (x,y) in Definition 8).

The score S i of the i th cloud combination mainly depends on

he number of participating clouds and the communication cost

etween them. Algorithm 3 calculates the score of CC i using for-

ula in line 5, with N i is the number of clouds in the i th com-

ination; |E| is the number of edges representing communication

inks between clouds in CC i ; cost j denotes the communication cost

etween the two clouds in the j th communication link. The total

ost for the combination CC i is calculated by considering the sum

f the communication costs in the cloud combination (
∑ | E|

j=1
cos t j).

and β are numerical values between [0,1] which denote the im-

ortance factors of clouds’ number and inter-clouds communica-

ion cost, respectively. To discourage the participation of clouds

rom scattered availability zones and encourage having a minimal

nter-cloud communication cost as the most important objective, α
alue should be smaller than β (see Section 8).

If the score of CC i is lower than the minimal score S min (line 6),

he current best cloud combination (CC best) is updated (line 7) and

he new minimal score S i is saved (line 8). Finally, the algorithm

eturns the optimal cloud set CC best (line 11).

Note that, in this version of work, we focused on the sequen-

ial structure of a service composition. This is why the total inter-

loud communication cost is calculated, according to the sequen-

ial execution order of services, as the sum of the communica-

ion costs in a cloud combination (
∑ | E|

j=1
cos t j). Indeed, according

o YAWL model (Gabrel et al., 2015), a composite service has four

asic structures: sequential, cyclic, parallel and conditional. In the

uture, the proposed scoring formula will be enriched to cover all

he patterns in YAWL model.

Illustration: To better understand the FCA-based approach to

ulti-cloud service composition, we use the example of multi-

loud lattice in Fig. 3 . In this example, the multi-cloud environ-

ent consists of five clouds {C1, C2, C3, C4, C5}. Each one consists

f a set of providers (with their offered services), which is a subset

f {P1, P2, …, P10}.

Suppose that we have a service request S r = {S1, S2, S4, S6}.

hen a user sends his request to the composition engine, there

ay exist many solutions in the different clouds that may satisfy

is needs. These solutions are extracted based on the possible rela-

ions (within concept lattices) between providers and their offered

ervices on the first hand, and between providers and their hosting

louds on the second hand.

By applying Algorithm 1 , a set of providers that offer a part (or

ll) of the requested services is extracted from each Cloud lattice.

ooking within the five lattices of services (L C
1
, L C

2
, L C

3
, L C

4
, and L C

5
),

he candidate providers are {P1, P2, P3, P4, P6, P8, P9}. Fig. 4 (a)

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 145

Fig. 3. Main steps of the multi-cloud service composition approach.

Fig. 4. Top-down lattice parsing: (a) sub-hierarchy of candidate providers’ concepts in L C 1 (b) sub-hierarchy of candidate clouds’ concepts in L MC . (For interpretation of the

references to color in this figure, the reader is referred to the web version of this article.)

p

l

t

d

o

t

l

c

s

S

t

a

t

c

h

w

i

s

o

0

C

n

C

w

m

s

c

s

C

l

l

w

n

i

h
resents a sub-hierarchy of the Cloud lattice in Fig. 2 (first three

evels). This sub-hierarchy depicts the formal concepts that contain

he requested services in the first cloud. Red and blue rectangles

epict the pertinent concepts that offer the minimal combination

f providers, whereas red lines denote the hidden associations be-

ween these formal concepts. In Fig. 4 (b), the candidate clouds be-

ong to the colored formal concepts (first two levels of the multi-

loud lattice in Fig. 1). The associations between these latter are

pecified using green lines. From Fig. 4 (a), we can see that services

1, S2 and S4 are offered by provider P3 (see the 2nd concept in

he blue rectangle) which deployed its services in two Cloud avail-

bility zones: C3 and C5 (see the 9th concept in Fig. 4 (b)). Whereas

he remaining service S6 is offered by providers P1 and P2 from

loud C1 (see the 1st concept in Fig. 4 (b)), as well as provider P4

osted by Cloud C5 (see the 4th concept in Fig. 4 (b)).

Because we adopt a top-down approach, the formal concept

ith the highest size of Extent (i.e. highest number of services)

s processed to confirm whether it contains a part of the requested

ervices. In the example of Fig. 4 (a), the supremum (top concept)
f the lattice is ignored because the size of its Intent is equal to

 (C1.Intent = Ø). This means that none of the providers hosted in

loud C1 offer all of the requested services. Consequently, it is un-

ecessary to process this concept.

Take the example of the first cloud in Fig. 4 (a). Because

2.Extent \ S r = {S1, S2, S4}, the candidate provider P3 in C2.Intent

ill be added to the Combiner list, and the set containing the re-

aining requested services is S r = {S6}. Because S r is not empty, the

ame routine is repeated using the next largest concept C4, which

ontains in its Extent part the rest of requested services {S6}. Con-

equently, candidate provider P2 in the Intent part is added to the

ombiner list. The algorithm will then terminate processing the

attice of the first cloud and starts running through the next cloud

attice. At the end, a set of candidate providers from the 5 clouds

ill form a sub-hierarchy of the multi-cloud lattice L MC .

These providers are used to extract the candidate cloud combi-

ations according to the hidden relations between formal concepts

n the multi-cloud lattice L MC . For instance, providers P1 and P2

ost their services in the same cloud C1, services of providers P3

146 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

Algorithm 1 Candidate providers’ extraction.

Input: A user request Sr; N lattices L C 1 , L
C
2 , …, L C N of services and their providers.

Output: M sets of candidate service providers

Assumption: Concepts are sorted in decreasing order based of the number of

offered services

01: Begin

02: PSs : = Ø

03: for each cloud Cl i do // perform a top-down search within each lattice

04: S a : = Ø

05: V prov : = Ø

06: for each C j in L C
i

do

07: if (S r – S a) ∩ C j .Extent = Ø then // check if the Extent contains

services

that can fulfil user request

08: add (S r – S a) ∩ C j .Extent to S a
09: V prov : = V prov ∪ C j .Intent // add the providers to combiner list

10: end if

11: if S a : = S r then // user request fulfilled

12: PC : = getProvidersCombinations(V prov)

13: PSs : = PSs ∪ PC

14: Initialize S a and V prov

15: end if

16: end for

17: end for // check the next cloud

18: return PSs

19: End

Algorithm 2 Cloud combinations’ construction.

Input : M sets PS = {PS 1 , PS 2 , …, PS M } of candidate service providers; a lattice

L MC of all clouds and their hosted providers.

Output : A set CCS of candidate cloud combinations.

Assumption : Concepts are sorted in decreasing order based of the number of

hosted providers

01: Begin

02: CCS: = Ø

03: for each candidate providers’ set PS i in PS do

04: V comb : = Ø

05: for each C j in L MC do

06: if C j .Extent ∩ PSi = Ø then

07: V comb : = V comb ∪ C j .Intent // add the cloud to the combiner list

08: PS i : = PS i – C j .Extent

09: end if

10: if PS i : = Ø then break

11: end for

12: CC: = getCombinations(V comb)

13: CCS: = CCS ∪ CC

14: end for

15: return CCS

16: End

Algorithm 3 Optimal cloud combination’s selection.

Input : A set CCS = {CC 1 , CC 2 , …, CC m } of cloud combinations; Matrix M of

inter-cloud communications.

Output : Cloud combination with minimal number of clouds and minimal

communication cost.

01: Begin

02: S min : = S MAX

03: for each cloud combination CC i do

04: E : = getCommunicationLinks(CC i , M)

05: S i : = α. N i + β.
∑ | E|

j=1
cos t j

06: if S i < S min then

07: CC best : = CC i
08: S min : = S i
09: end if

10: end for

11: return CC best

12: End

Table 5

Candidate cloud combinations.

Providers set Combination Size Cost Score

{P1, P3} {C1, C3} 2 560 392.6

{P1, P3} {C1, C5} 2 240 168.6

{P2, P3} {C3} 1 0 0.3

{P3, P4} {C5} 1 0 0.3

{P6, P8, P9} {C2, C5} 2 540 378.6

{P6, P8, P9} {C2, C4} 2 870 609.6

{P1, P4, P9} {C1, C2, C5} 3 690 483.9

r

c

b

m

a

j

i

s

r

v

b

c

c

v

p

e

c

c

t

o

c

s

a

n

a

7

r

i

t

o

i

m
and P4 are deployed in cloud C5, both providers P6 and P8 deploy

their services in the same clouds {C4, C5}, whereas the remaining

candidate provider P9 deploys its services on cloud C2. Thus, the

possible cloud combinations for the five different providers’ sets

are given in Table 5.

By looking within the matrix of inter-cloud communication,

Algorithm 3 can calculate the score of each cloud combination.

Among these candidates, only {C3} and {C5} are the optimal cloud

combinations, because they use the minimal number of clouds

(only one cloud) with a minimal communication cost equal to 0 ms

(see Table 5). Although the last cloud combination {C1, C2, C5} in-

volves a higher number of participating clouds, it is considered

better than the combination {C2, C4} because this later produces

a higher communication cost (870 ms).

Finally, only services available on cloud C3 or cloud C5 are con-

sidered in the final step of the composition process.

6.4. Service composition selection

Once the optimal cloud combination is determined, the set of

services deployed in the selected clouds forms a distributed service
epository that will be used in the selection of the optimal service

omposition.

Hence, the last step consists of comparing the services’ capa-

ilities (functional interfaces, QoS offerings, etc.) with the require-

ents of each task (i.e. requested service) in the user request S r ,

nd then selecting a suitable service for each task. Since this is

ust a classical service selection problem, we use one of the ex-

sting Cloud service selection approaches to ensure service compo-

ition within the set of selected clouds. Using the selection algo-

ithm, each task in the service query can be allocated to one ser-

ice in the optimal multi-cloud repository (i.e. selected cloud com-

ination), such that the QoS of service composition is optimized.

Note that for some cloud users, QoS is more important than

ommunication cost, as reducing the inter-cloud communication

ost does not always guarantee a high QoS of the composed ser-

ice. But, it is important to notice that the service composition

rocess is, in general, driven by the user requirements and pref-

rences. So, there are always tradeoffs between QoS, number of

ombined clouds, inter-cloud communication cost, and even the

ost of the service itself, when multiple clouds are considered. In

his version of work, our main objective is to reduce the number

f clouds, the number of providers and the inter-cloud communi-

ation cost. Our approach may be easily enhanced with QoS con-

traints by integrating a QoS scoring function into the proposed

lgorithms. Hence, low computed QoS values may be used to pe-

alize a candidate cloud combination, even if this later guarantees

 reduced number of clouds and a low communication cost.

. Theoretical complexity study

The strong mathematical background of FCA assured an explicit

epresentation of the multi-cloud environment. Also, the regroup-

ng capabilities offered by the lattice theory allowed us to extract

he most suitable providers and close clouds. However, finding the

ptimal cloud combination set comes with a price as the complex-

ty of algorithms depends on the size of the lattices L MC and L C .

Candidate providers’ extraction: The cost of this step depends

ainly on the number of requested services (|Sr|) and the size

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 147

o

r

p

a

E

t

h

i

t

i

T

p

r

o

i

f

w

c

T

t

r

c

i

c

t

O

t

e

t

O

O

i

i

o

v

b

l

c

t

r

a

a

c

m

t

i

r

f

i

t

a

m

fi

w

i

e

e

8

s

a

h

d

v

a

s

a

v

w

1

0

s

i

o

a

s

c

t

S

s

t

e

f

8

r

v

n

d

i

t

v

i

a

s

a

e

t

a

i

o

v

t

w

s

t

t

n

c

i

p

d

c

c

c

8

s
f the multi-cloud environment (N). In the worst case, the algo-

ithm runs through the whole cloud lattice L C to extract candidate

roviders. This process is repeated for each cloud, which gives us

 complexity in order of O (N .| L C |). Also, Algorithm 1 checks if the

xtent contains services that can fulfil a user request. The cost of

his operation is O (| Sr | 2 .| C |), where | C | is the number of services

osted by a cloud provider. The last bloc of the algorithm, which

s devoted to the combination of candidate providers considers all

he concepts in each lattice L C , and each provider is combined with

ts peers in other Extent sections in the combinations vector V prov .

hat is a complexity of O (| L C | 2) in the worst case. Hence, the com-

lexity of this algorithm would be O (Sr 2 . N .| L C | 3 .| C |).

Cloud combinations’ construction: The complexity of this algo-

ithm depends on the set of candidate providers (PS) and the size

f the multi-cloud environment. For the first input, the size of PS

n the worst case is |Sr| (each requested service is offered by a dif-

erent provider). For each providers’ set, a total of | L MC | concepts

ill be processed to check if the Extent section of each concept

ontains providers that offer a sub-set of the requested services.

he cost of this operation is O (|Sr|.|PSs| 2 .| L MC |.| P |), where | P | is the

otal number of providers in the MCE. The last bloc of the algo-

ithm, which is devoted to the combination of candidate clouds

onsiders all the Intent sections in the lattice L MC , and each cloud

s combined with its peers in other Intent sections in the Cloud

ombinations vector V comb . That is a complexity of O(| L MC | 2) in

he worst case. Finally, the complexity of this algorithm would be

 (|Sr|.|PSs| 2 .| L MC | 3 .| P |).

Selection of optimal cloud combination: In this algorithm, we run

hrough each cloud combinations’ set (CCS) and we process the

ntries of inter-cloud communications matrix to calculate the to-

al communication cost. The cost of running through the matrix is

(N

2), where N is the number of clouds. The total complexity is

 (|CCS|. N

2).

Regarding the complexity of the proposed FCA-based method

n real-word scenarios, there exists a large amount of (big) data

ncluding the high number of clouds and providers, as well as vari-

us types of services that produce a huge volume of data (e.g., con-

ersational and transactional services, data services, and recently

ig services). This will generate a large formal context with over-

apping relationships, but it will not have negative impacts on the

omplexity and the quality of our solution, because of the adopted

op-down parsing method. In specific scenarios, FCA solutions may

isk to suffer from a high complexity and execution time, for ex-

mple, when a system needs to repetitively build the lattice from

 formal context. This is the case of dynamic and real-time appli-

ations or stream-based systems, that need to rebuild the lattice to

ake a decision or to process the new coming/generated informa-

ion. In our context, we do not need to build a lattice at each com-

ng request, because the lattice which represents the multi-cloud

epository is constructed only once at the beginning, that is, be-

ore receiving any user request.

Moreover, one of the advantages of applying FCA in our work

s the ability to adopt a top-down approach, which allows parsing

he minimal number of formal concepts in the lattices, and getting

 minimal sub-set of services or clouds that are regrouped in the

inimal number of Extent parts. Using top-down parsing, we can

nd the optimal combination in the first few levels of the lattice,

ithout needing to run through the whole lattice. This has a pos-

tive impact on the processing time. So FCA can be accepted as an

ffective solution even in large-scale multi-cloud environment and

ven in case of a lower density of the multi-cloud formal context.

. Experimental results

To verify the effectiveness of our solution to the multi-cloud

ervice composition problem, we have implemented our FCA-based
pproach using Java programming language and Galicia tool. We

ave also developed Java classes to randomly generate some test

ata sets including, formal context files, data sets of hosted ser-

ices, graph of multi-cloud environment. Implementation details

re also available on this URL: https://goo.gl/SZuqdI . As for the

imulation parameters, to determine the most relevant values of α
nd β , we created a simple java method that allows varying the

alues of α and β between 0 and 1 (knowing that α + β is al-

ays equal to 1). In this simple script, a loop is performed with

0 pairs of values 〈 α, β〉 (〈 0.1, 0.9 〉 , 〈 0.2, 0.8 〉 , 〈 0.3, 0.7 〉 , …, 〈 0.9,

.1 〉), which are used in the calculation of the cloud combinations’

cores. This test is performed 10 times to see the impact of vary-

ng the values of α and β on the average produced scores. Based

n this test, we came to the conclusion that α must be set to 0.3

nd β to 0.7, so that to discourage the participation of clouds from

cattered availability zones and encourage having a minimal inter-

loud communication cost as the most important objective.

Experiments are conducted with various numbers of clouds (be-

ween 5 and 50) and candidate services (up to 1250 services).

ince the multi-cloud composition evaluation consisted of some

tochastic elements in their implementation (random formal con-

exts, random communication costs, random binary relations, etc.),

ach of the test problems was repeated 10 times. The user request

or all test problems contains five services.

.1. Evaluation of computation time

The aim of the first set of experiments is to evaluate the time

equired to extract the candidate providers and clouds. We have

aried the number of clouds between 5 and 50 clouds, with a fixed

umber of services within each cloud. We also have varied the

ensity of each formal context between 20% and 40%, to see the

mpact of hosting providers in several clouds on the total execu-

ion time. In the experiments, we have excluded the high density

alues because, in real-world scenarios, a service cannot be hosted

n all (or a large number of) clouds due to the financial charges

nd the complexity of its management. For these reasons, the den-

ity of the multi-cloud formal context should not be high (e.g., for

 formal context with 10 providers and 5 clouds, if the density is

qual to 80%, this means that 4 among 5 clouds, on average, host

he services of each provider). Also, a very low density means that

 provider hosts its services in a very few number of clouds or

n only one cloud. However, we did not consider this case since

ur focus is on a multi-cloud setting. Based on this, we decided to

ary the density between 20% and 40% for all the tests. Composi-

ion time results are given in Fig. 5 .

Looking at the figure above, the execution time is slightly high

hen a provider is not hosted on several clouds (i.e. lower den-

ity of the multi-cloud formal context). Indeed, the algorithm, in

his case, must run through the whole lattice and even may reach

he infimum concept to extract the candidate clouds, which has a

egative impact of the extraction time. The extraction process of

loud combinations is not affected in case of a higher density. This

s explained by the ability of the algorithm to extract candidate

roviders and clouds from the first formal concepts using a top-

own approach.

Note that even with high density of the multi-cloud formal

ontext, the global time to extract candidate clouds and construct

loud combinations always decreases, except for the case of 50

louds (density = 40%).

.2. Quality of multi-cloud composition evaluation

The second set of experiments aims to evaluate the quality re-

ults of classical single-cloud service composition in comparison

https://goo.gl/SZuqdI

148 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

Fig. 5. Composition time with various number of clouds and various densities.

Fig. 6. Optimal cloud combinations sizes with various densities and numbers of

clouds.

Fig. 7. Evaluation of the inter-cloud communication cost with various densities and

numbers of clouds.

p

i

m

e

s

t

t

c

2

a

r

d

a

c

H

a

t

w

T

n

s

c

s

t

m

c

8

a

m

t

K

O

t

fi

C

i

m

c

t

a
to the multi-cloud approach. We varied the number of clouds be-

tween 5 and 50 for different values of cloud formal context density

(between 20% and 40%).

It can be seen from the above figure that the optimal cloud

combination size is not affected by the variation of density of the

multi-cloud formal context and when the multi-cloud space be-

come larger (50 clouds). Moreover, the size of optimal cloud com-

binations has never reached the number of request services (5 ser-

vices) and, in most cases, varies between 2 and 3 clouds. We also

can see that the user request is satisfied by a single cloud (best

case) even in a reduced density (case of 5 clouds). Fig. 6 also shows

that, for cloud sizes 5 and 20, we have optimal cloud combina-

tions for density 30% compared to 20%. This is understandable be-

cause a lower density means that a provider hosts its services in

a very few number of clouds, which decreases the probability that

a provider belongs to several formal concepts, because these latter

will be used to determine the best cloud combination. Regarding

the case of density 40% for cloud sizes 5 and 20, selecting a com-

bination with higher size rather that a lower number of clouds,

like in the case of density 30%, could be attributed to the reduced

inter-cloud communication cost produced by the combination with

the higher size. Although the combinations for density = 40% in-

volve a higher number of participating clouds, they are considered

better than those obtained for density = 30%, because these latter

produce higher communication costs.
A higher density of the multi-cloud formal context also has a

ositive impact on the inter-cloud communication cost, as shown

n Fig. 7 . Indeed, minimizing the number of participating clouds

eans that at least two providers belong to the same cloud and

xchange data with a low communication cost. Bars in Fig. 7 also

how that the cost of inter-cloud communications is proportional

o the cloud combinations size. Also, it is clear from the figure

hat the larger multi-cloud space has not increased the inter-cloud

ommunication cost. In fact, cost values are between 198 ms and

44 ms in most cases, which presents a reduced cost that will not

ffect the total execution time of the optimal service composition.

Note that the quality of produced solution is not affected by the

educed density of the multi-cloud formal context (e.g. 20%). A re-

uced density means that a provider is hosted on a single cloud or

t most on few clouds. This means that the size of optimal cloud

ombination is equal to the size of user request, in the worst case.

owever, one of the advantages of applying FCA is the ability to

dopt a top-down approach to get a minimal sub-set of services

hat are regrouped in the Extent section of the lattice supremum,

hich means that these services are offered by the same provider.

his has a positive impact on the final solution as reducing the

umber of providers increases the probability to find the optimal

et of clouds in the Extent section of the supremum concept or in a

lose concept, also using the top-down approach. Experimental re-

ults showed that our FCA-based method always produces an op-

imal cloud combination even in large-scale multi-cloud environ-

ent and even when each provider is hosted in few numbers of

louds.

.3. Comparison with other approaches

In this section, the performance and the solution quality of our

lgorithm are compared to those produced by the ant colony opti-

ization algorithm (ACO-WSC) proposed by Yu et al. (2015) and

he combinatorial optimization algorithm (COM2) proposed by

urdi et al. (2015) . To simulate the cloud environment, we used

WL-S XPlan package (Klusch et al., 2005) which offers a service

est set. In OWL-S XPlan package, the MCE includes five service

les F = {F1, F2, F3, F4, F5} deployed on four clouds MCE = {C1, C2,

3, C4}. Based on these settings, we transformed these MCE data

nto a set of formal contexts and we created five multi-cloud for-

al contexts, each one with a different configuration that uses four

louds and five providers (i.e. service files). The density values of

he five created formal contexts are respectively 55%, 40%, 40%, 50%

nd 40%. These values are determined according to the settings of-

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 149

Fig. 8. Number of combined clouds in MCSC-FCA, ACO-WSC and COM2 with various

MCE settings.

f

(

t

e

s

p

c

d

t

i

c

a

i

t

a

c

c

v

d

m

(

W

u

c

t

1

o

e

C

o

T

a

p

o

b

n

r

p

r

Fig. 9. Communication costs for MCSC-FCA, ACO-WSC and COM2 with various MCE

settings.

Fig. 10. Composition time for MCSC-FCA, ACO-WSC and COM2 with various MCE

settings.

a

p

s

s

a

t

r

c

t

M

C

t

d

n

t

g

o

o

fi

o

i

r

t

c

t
ered by OWL-S XPlan package, and the distribution of providers

i.e. services files) on the four clouds in each MCE. We also main-

ained the same simulation parameters as in Kurdi et al. (2015) to

nsure a robust comparative experimental study.

Comparison of cloud combinations’ sizes: Fig. 8 illustrates the

izes of optimal cloud combination for each MCE test case. Com-

aring the three algorithms, our method surpassed COM2 in most

ases with a margin of one cloud. MCSC-FCA and ACO-WSC pro-

uced the best combinations’ sizes for all MCE test cases. Addi-

ionally, the number of clouds involved in the optimal composition

s always equal to the number of concepts processed in the multi-

loud lattice. These optimal results are explained by the top-down

pproach adopted to run through the lattice, which allowed pars-

ng the minimal number of concepts. Even in its worst (2 clouds),

he algorithm reaches the second level of the multi-cloud lattice,

nd always returns a few number of clouds. This low number of

louds has a positive impact on the inter-cloud communication

ost.

Comparison of the inter-cloud communication costs: Since the ser-

ice test set offered by OWL-S XPlan package (Klusch et al., 2005)

oes not include inter-cloud communication data, we created the

atrix of inter-cloud communication costs with 4 × 4 dimension

in OWL-S XPlan package, each of the five MCEs includes 4 clouds).

e randomly generated the entries of the matrix as simple val-

es denoting the communication times (in milliseconds) between

louds. To avoid the doubt whether the random values in the ma-

rix can influence the obtained results (total communication cost),

0 different matrices were generated for the test and used for each

f the five MCE settings.

Using our defined formula (see Algorithm 3), the total cost for

ach cloud combination produced by MCSC-FCA, ACO-WSC and

OM2 in the previous test is calculated by considering the sum

f the communication costs in the cloud combination (
∑ | E|

j=1
cos t j).

he obtained results are shown in Fig. 9 .

It is clear from Fig. 9 that the inter-cloud communication costs

re proportional to the cloud combinations sizes obtained in the

revious test. For all MCE settings, the best total cost values were

btained by MCSC-FCA and ACO-WSC. Our approach is slightly

etter than ACO-WSC, unlike COM2 which was influenced by the

umber of clouds involved in the composition.

Fig. 9 also shows that the three approaches produced the same

esults for some test cases. For example, MCSC-FCA and ACO-WSC

roduced the same communication costs for three different envi-

onments: MCE1, MCE3 and MCE4 (respectively 146 ms, 156.2 ms,
nd 151.6 ms). In the fourth MCE setting, the three approaches

roduced the same communications cost (151.6 ms). This is under-

tandable because, as shown in Fig. 8 , the approaches returned the

ame number of combined cloud in these MCE settings, and prob-

bly the same set of clouds in the optimal combination. However,

his is not always true because the same combination size was

eturned for the three approaches in MCE1, but with a different

ommunication cost produced by COM2 (154.6 ms). Same thing for

he approaches MCSC-FCA and ACO-WSC in the multi-cloud setting

CE5 (respectively 153 ms and 159.5 ms). Although ACO-WSC and

OM2 have produced the best combinations’ sizes like MCSC-FCA,

hey did not return the optimal cloud set, unlike our approach. In-

eed, the grouping capabilities of FCA not only retain a minimal

umber of clouds, but also the best cloud combination according

o the possible (hidden) relations between the formal concepts that

roup these clouds. As for COM2, it is clear that the higher number

f clouds has a negative impact on the communication cost (case

f MCE2, MCE3 and MCE5).

Comparison of the execution times: Regarding the time spent to

nd the optimal cloud combination, Fig. 10 shows that MCSC-FCA

utperforms ACO-WSC and COM2 for the five MCE test cases. This

s explained by the top-down approach (adopted for optimization

easons) that allowed processing the minimal set of concepts in

he lattice. Using a top-down method, we can find the optimal

ombination in the two first levels of the lattice, without needing

o run through the whole multi-cloud lattice, and we never reach

150 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

c

e

o

t

e

a

f

m

t

B

B

n

r

m

i

R

A

A

C

D

D

D

F

G

G

H

J

J

K

K

K

K

P

the infimum. Moreover, the requested providers may belong to the

Extent part of the supremum concept or, in the worst case, in the

two first levels of the lattice.

In contrast, COM2 has to examine most available services,

which has a negative impact on its execution time as shown in Fig.

10 . The gap of execution time can be easily seen from the above

figure. COM2 provides an optimal combination in approximately

195 s, unlike the time spent by our method which is 2.801 s in the

worst case and 0.785 s in its best. Compared to COM2, ACO-WSC

features a slightly better execution time. This could be attributed

to the constructive greedy heuristic search offered by ACO. How-

ever, this algorithm always suffers from a high execution time be-

cause it randomly selects a cloud base during the combination step

and examines a high number of services.

9. Conclusion

The aim of this work was to provide a solution to the problem

of multi-cloud service composition. The main goal was to propose

algorithms that could efficiently offer optimal service compositions

with a short total execution time and a minimal number of clouds,

thereby reducing communication costs and financial charges. The

proposed method takes the advantages of the mathematical foun-

dations of Formal Concept Analysis. We modelled the MCE in a

set of concept lattices. In cloud lattices, each formal concept repre-

sents a possible cluster of services offered by the same provider(s).

Whereas, in the multi-cloud lattice, each formal concept represents

a possible cluster of providers that host their services within the

same cloud. These clusters are then used to determine clouds com-

binations according to the possible (hidden) relations between two

or more formal concepts. The results of our study showed that the

grouping capabilities of FCA retain a high number of services of-

fered by the same provider within the same cloud, which signifi-

cantly ensures, not only a reduced number of providers, but also

a minimal number of clouds. These results arise from the fact that

the higher is the number of services in the Extent part of a formal

concept, the lower is the number of providers and clouds.

Our experimental results also indicated that the proposed

method can efficiently and effectively deliver high quality of ser-

vice compositions that come from a minimum number of clouds.

However, because of the complex nature of FCA method, the time

devoted to explore and exploit a large number of clouds is high, al-

though it is considerably better that those spent by ACO-WSC and

COM2 methods. The future work aims to reduce the time spent to

deliver a suitable service composition in a multi-cloud setting.

Also, composing services by only focusing of reducing the num-

ber of participating clouds may disclose sensitive service tasks,

especially if these latter are deployed in a dynamic and an un-

trusted cloud environment. A challenging problem is to consider

security constraints in service composition. In fact, there are sev-

eral security issues when composing services with uncertain avail-

ability and security constraints. Existing secure service composition

mechanisms only focus on SLA availability rates and assume a fully

trusted Cloud provider, which is not always true. To address these

issues, it is important to provide a service composition by combin-

ing the safest services coming from the most trusted cloud com-

bination. Such clouds must comply at best with user’s preferences

and policies, and offer an appropriate level of safety. This will be

the focus of our future work.

Finally, with the growing need to offer business processes as

Cloud services (also called “Business Process as a Service” or BPaaS

(Accorsi, 2011 ; Petcu and Stankovski, 2012) and to deal with the

highly dynamic nature of multi-cloud environments, we look for

the design and management of what we call “self- ∗ BPaaS”. The

latter are Cloud-oriented business processes which have the abil-

ity to manage themselves without user intervention. Self- ∗ service
ompositions are agent-oriented autonomic compositions (Chainbi

t al., 2012). However, the traditional Cloud service composition

nly constructs the potential dependency relations according to

he user’s requirements among Web services. Moreover, the op-

ration unit of traditional service composition is atomic service,

nd existing works seldom consider the reuse of service process

ragments (SPF) in any granularity (Yang et al., 2014). Process frag-

ents’ reuse is viewed as a powerful means for the rapid construc-

ion of new services. Effectively reusing arbitrary granularities of

PaaS fragments has not been solved yet. We believe that reusing

PaaS fragments than reusing atomic Cloud services directly can

ot only decrease the composition time, but also improve the

eliability of the whole composition process. In this context, a

ethod for reusing BPaaS fragments based on k-cut technique

s underway.

eferences

ccorsi, R. , 2011. Business process as a service: Chances for remote auditing. In: Pro-

ceedings of 2011 IEEE 35th Annual Computer Software and Applications Confer-
ence Workshops (COMPSACW). IEEE, pp. 398–403 .

rdagna, D. , Di Nitto, E. , Mohagheghi, P. , Mosser, S. , Ballagny, C. , D’Andria, F. , et al. ,

2012. MODAClouds: a model-driven approach for the design and execution of
applications on multiple clouds. In: Proceedings of 2010 ICSE Workshop on

Modelling in Software Engineering (MISE), pp. 50–56 .
Chainbi, W. , Mezni, H. , Ghedira, K. , 2012. AFAWS: an agent based framework for

autonomic Web services. Multiagent Grid Syst. 8 (1), 45–68 .
heng, J. , Yu, J.X. , Ding, B. , Philip, S.Y. , Wang, H. , 2008. Fast graph pattern matching.

In: Proceedings of IEEE 24th International Conference on Data Engineering, April
2008 (ICDE 2008). IEEE, pp. 913–922 .

e Maio, C. , Fenza, G. , Loia, V. , Orciuoli, F. , 2017. Distributed online temporal Fuzzy

concept analysis for stream processing in smart cities. J. Parallel Distrib. Comput
in press .

e Maio, C. , Fenza, G. , Loia, V. , Senatore, S. , 2012. Hierarchical web resources re-
trieval by exploiting fuzzy formal concept analysis. Inf. Process. Manag. 48 (3),

399–418 .
ou, W. , Zhang, X. , Liu, J. , Chen, J. , 2015. HireSome-II: towards privacy-aware cross–

cloud service composition for big data applications. IEEE Trans. Parallel Distrib.

Syst. 26 (2), 455–466 .
Fenza, G. , Senatore, S. , 2010. Friendly web services selection exploiting fuzzy formal

concept analysis. Soft Comput. 14 (8), 811–819 .
erchichi, H., Akaichi, J., 2016. Using mapreduce for efficient parallel processing of

continuous K nearest neighbors in road networks. J. Softw. Syst. Dev doi: 10.
5171/2016.356668 .

abrel, V. , Manouvrier, M. , Murat, C. , 2015. Web services composition: complexity

and models. Discrete Appl. Math. 196 (C), 100–114 .
utierrez-Garcia, J.O. , Sim, K.M. , 2013. Agent-based cloud service composition. Appl.

Intell. 38 (3), 436–464 .
ao, F. , Park, D.S. , Min, S.D. , Park, S. , 2016. Modeling a big medical data cognitive

system with N-Ary formal concept analysis. In: Advanced Multimedia and Ubiq-
uitous Engineering. Springer, Singapore, pp. 721–727 .

rad, F. , Tao, J. , Brandic, I. , Streit, A. , 2015. SLA enactment for large-scale healthcare

workflows on multi-cloud. Future Gener. Comput. Syst. 43, 135–148 .
ula, A. , Sundararajan, E. , Othman, Z. , 2014. Cloud computing service composition: a

systematic literature review. Expert Syst. Appl. 41 (8), 3809–3824 .
Klusch, M. , Gerber, A. , Schmidt, M. , 2005. Semantic web service composition plan-

ning with owls-xplan. In: Proceedings of AAAI Fall Symposium on Semantic
Web and Agents, November 2005, USA, vol. 5 .

ritikos, K. , Plexousakis, D. , 2015. Multi-cloud application design through cloud ser-

vice composition. In: Proceedings of 2015 IEEE 8th International Conference on
Cloud Computing, June 2015. IEEE, pp. 686–693 .

umar, C.A. , Singh, P.K. , 2014. Knowledge representation using formal concept anal-
ysis: a study on concept generation. Glob. Trends Intell. Comput. Res. Dev. 11,

306–336 .
urdi, H. , Al-Anazi, A. , Campbell, C. , Al Faries, A. , 2015. A combinatorial optimiza-

tion algorithm for multiple cloud service composition. Comput. Electr. Eng. 42,

107–113 .
Kuznetsov, S.O. , 2004. Machine learning and formal concept analysis. In: Interna-

tional Conference on Formal Concept Analysis, February 2004. Springer, Berlin,
Heidelberg, pp. 287–312 .

uznetsov, S.O. , Obiedkov, S.A. , 2002. Comparing performance of algorithms for gen-
erating concept lattices. J. Exp. Theor. Artif. Intell. 14 (2–3), 189–216 .

Microsoft Communications & Media Industries, “Multi-cloud service delivery & end-
to-end management,” Ref. architecture, 2013. https://enterprise.microsoft.com/

en- us/articles/industries/telecommunications/multi- cloud- service- delivery-and-

end- to- end- management- reference- architecture/ .
etcu, D. , 2011. Portability and interoperability between clouds: challenges and case

study. In: Abramowicz, W., Llorente, I., Surridge, M., Zisman, A., Vayssière, J.
(Eds.), Towards a Service-Based Internet. In: Lecture notes in Computer Science.

Springer, New York, pp. 62–74 .

http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0008
http://dx.doi.org/10.5171/2016.356668
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0020
https://enterprise.microsoft.com/en-us/articles/industries/telecommunications/multi-cloud-service-delivery-and-end-to-end-management-reference-architecture/
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0021

H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152 151

P

P

P

Q

S

V

W

W

W

Y

Y

Z

Z

etcu, D. , Stankovski, V. , 2012. Towards cloud-enabled business process manage-
ment based on patterns, rules and multiple models. In: 2012 IEEE 10th Inter-

national Symposium on Parallel and Distributed Processing with Applications.
IEEE, pp. 454–459 .

oelmans, J. , Ignatov, D.I. , Kuznetsov, S.O. , Dedene, G. , 2013a. Formal concept anal-
ysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40

(16), 6538–6560 .
oelmans, J. , Kuznetsov, S.O. , Ignatov, D.I. , Dedene, G. , 2013b. Formal concept anal-

ysis in knowledge processing: a survey on models and techniques. Expert Syst.

Appl. 40 (16), 6601–6623 .
i, L. , Dou, W. , Zhang, X. , Chen, J. , 2012. A QoS-aware composition method support-

ing cross-platform service invocation in cloud environment. J. Comput. Syst. Sci.
78 (5), 1316–1329 .

heng, Q.Z. , Qiao, X. , Vasilakos, A.V. , Szabo, C. , Bourne, S. , Xu, X. , 2014. Web services
composition: a decade’s overview. Inf. Sci. 280, 218–238 .

enkat, M., 2016. Enterprise cloud strategy: Governance in a multi-cloud

environment. IBM . https://www.ibm.com/blogs/cloud-computing/2016/11/
enterprise- governance- multi- cloud/ .
ei, Y. , Blake, M.B. , 2010. Service-oriented computing and cloud computing: chal-
lenges and opportunities. IEEE Internet Comput. 14 (6), 72 .

eng, S.S. , Tsai, H.J. , Liu, S.C. , Hsu, C.H. , 2006. Ontology construction for information
classification. Expert Syst. Appl. 31 (1), 1–12 .

u, T. , Dou, W. , Hu, C. , Chen, J. , 2017. Service mining for trusted service composition
in cross-cloud environment. IEEE Syst. J. 11 (1), 283–294 .

ang, R. , Li, B. , Wang, J. , He, L. , Cui, X. , 2014. SCKY: A method for reusing service pro-
cess fragments. In: Proceedings of 2014 IEEE International Conference on Web

Services (ICWS), June 2014. IEEE, pp. 209–216 .

u, Q. , Chen, L. , Li, B. , 2015. Ant colony optimization applied to web service compo-
sitions in cloud computing. Comput. Electr. Eng. 41, 18–27 .

hang, F. , Hwang, K. , Khan, S.U. , Malluhi, Q.M. , 2016. Skyline discovery and compo-
sition of multi-cloud mashup services. IEEE Trans. Serv. Comput. 9 (1), 72–83 .

ou, G. , Chen, Y. , Xiang, Y. , Huang, R. , Xu, Y. , 2010. AI planning and combinatorial
optimization for Web service composition in cloud computing. In: Proceedings

of CCV Conference, May 17–18, 2010, Singapore .

http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0026
https://www.ibm.com/blogs/cloud-computing/2016/11/enterprise-governance-multi-cloud/
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30176-0/sbref0034

152 H. Mezni, M. Sellami / The Journal of Systems and Software 134 (2017) 138–152

cience from Manouba University in 2014. He is currently an Assistant Professor at Jen-

atory, Tunisia. His current research interests include Service lifecycle management, Cloud
ised several research works on Web service composition and adaptation, Cloud service

ement, etc. His publication record includes articles in peer-reviewed journals.

t the High Institute of Technological Studies in Jendouba, Tunisia. He received the M.S.

degree in computer science from Tunis El-manar University in 2017. Currently, he is a
nclude information security, databases security, and Big data.
Haithem Mezni received the Ph.D. degree in Computer s

douba University and a member of SMART Research Labor
computing and Big data. Haithem Mezni has also superv

provisioning and recommendation, Cloud resource manag

Mokhtar Sellami is a Technologist in computer science a

degree from Jendouba University, in 2005 and the Ph.D.
Member of RIADI research laboratory. His research areas i

	Multi-cloud service composition using Formal Concept Analysis
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Applying Formal Concept Analysis
	5 Characterizing multi-cloud environment using Formal Concept Analysis
	6 FCA-based multi-cloud service composition
	6.1 Extraction of candidate providers
	6.2 Construction of candidate cloud combinations
	6.3 Selection of optimal cloud combination
	6.4 Service composition selection

	7 Theoretical complexity study
	8 Experimental results
	8.1 Evaluation of computation time
	8.2 Quality of multi-cloud composition evaluation
	8.3 Comparison with other approaches

	9 Conclusion
	 References

