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Approach
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Abstract—Mobile Edge Computing (MEC) is providing cloud computing capabilities within the radio access networks and offering a
new paradigm to liberate the mobile devices from heavy computational workloads. Importantly, MEC can effectively reduce latency,
avoid congestion and prolong the battery lifetime of mobile devices by offloading the computation tasks from the mobile devices to a
physically proximal MEC servers. Particularly, Virtual Machines (VMs) scheduling is a critical issue for tasks offloading and
computation in MEC. Regarding to the VMs scheduling problem in MEC environmnet, this paper pioneers the use of Formal Concept
Analysis (FCA) methodology for identifying the mapping from tasks to VMs. Specifically, the VMs profile and tasks descriptions are
initially characterized as the formal contexts, respectively. With the constructed formal contexts, the corresponding formal concepts
which refer to the rules set, are then generated. To better infuse the rules set of VMs and tasks, this paper defines a similarity
measurement between formal concepts of VMs and tasks. Consequently, the matching problem from a given task to a virtual machine
is to return the expected virtual machine according to the principle of maximum similarity degree between formal concepts of virtual
machine and task. Extensive simulations are conducted with a real dataset for the validation of feasibility and effectiveness of the
proposed approach. Specifically, the proposed approach can significantly reduce the energy consumption around 28% comparing to
the approach without consideration of energy consumption. Overall, It is demonstrated that FCA-based VMs scheduling is a novel
solution for a sustainable VMs scheduling in MEC environment.

Index Terms—Mobile Edge Computing, Virtual Machines, Formal Concept Analysis, Infusion/Matching.

F

1 INTRODUCTION

MObile Edge Computing (MEC), as an emerging and
extended commercial computing paradigm of Cloud

Computing, is attracting much attention from both ICT
industries and academia. Specifically, MEC provides cloud
computing capabilities within the radio access networks
(RAN), offers a new paradigm to liberate the mobile devices
from heavy computation workloads [1], [2]. For tradition-
al cloud computing systems, e.g., Amazon Web Services,
Google Cloud Platform and Microsoft Azure, are leveraged
and thus long latency may be incurred due to data ex-
change between users and clouds servers. Different from
cloud computing system, MEC has the huge potential to
significantly reduce latency, avoid congestion and prolong
the battery lifetime of mobile devices by offloading the
computation tasks from the mobile devices to a physically
proximal MEC servers [3], [4].

The essential of computation tasks offloading onto cloud
servers is the problem of virtual machines (VMs) schedul-
ing. Technically, virtualization technology is playing a key
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role in cloud resources management and provisions, such
as improving the utilization of cloud resources and service
quality of users, reducing energy consumption, achieving
load balance [5]. Further, such technology cloud provide
users various services by encapsulating hardware computa-
tional resources [6]. At present, there have been many liter-
atures which explore the VMs scheduling in cloud comput-
ing. VMs scheduling algorithms in cloud environment can
be categorized into: task execution time aware scheduling
algorithm, resource utilization aware scheduling algorithm,
load balancing scheduling algorithm [7] and energy aware
scheduling algorithm [8], [9]. However, there is no previous
wok that uses Formal Concept Analysis (FCA) methodology
for VMs scheduling in both cloud computing and MEC
environments.

Thanks to the powerful ability of FCA for characterizing
the relationships between objects and attributes. Aiming to
find the appropriate mapping from VMs to tasks, this work
pioneers the use of FCA for constructing the formal contexts
for VMs profile as well as the user request (i.e., tasks
descriptions); finding the best mapping for VMs scheduling
by calculating the similarity between formal concepts of
tasks and VMs. In summary, this paper made the following
specific contributions.

• Regarding to the VMs scheduling problem in MEC
environment, we are first to use formal concept anal-
ysis methodology for identifying the mapping from
tasks to virtual machines. Specifically, the formal
context of VMs and Tasks are constructed, then the
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corresponding concept lattices are generated. Partic-
ularly, the attributes of these two formal context are
exactly same. This important feature provides the
way for calculating the similarity degree between
two concepts and then further achieves the schedul-
ing from tasks to virtual machines.

• To obtain the similarity between VMs and Tasks, the
similarity degree between a task and a virtual ma-
chine is formally defined. We compare the common
parts of intent of the concepts of VMs and Tasks.
Intuitively, the more common elements they share,
the higher similarity is.

• The extensive simulation demonstrate the significant
performance for virtual machines scheduling in MEC
environment by jointly considering the feasibility,
efficiency and energy consumption of scheduling.
The experimental results proved that our approach
can reduce the energy consumption around 28%
comparing to the VMs scheduling approach without
consideration of energy consumption in MEC envi-
ronment.

The rest of this paper is organized as follows. In Section
2, the related works in the literature are categorized and
overviewed. Section 3 provides the preliminary knowledge
about Formal Concept Analysis methodology and the rele-
vant properties. The addressed problem is mathematically
formulated in Section 4 via analyzing the major challenges
of conventional distributed tasks scheduling model. Section
5 presents the FCA-based VMs scheduling strategy in MEC.
The evaluation results of the proposed approach are provid-
ed in Section 6. Finally, Section 7 concludes this paper.

2 RELATED WORK

This section will overview the existing literatures on VMs
scheduling in cloud computing. VMs scheduling algorithms
in cloud environment can be divided into: task execu-
tion time aware scheduling algorithm, resource utilization
aware scheduling algorithm, load balancing scheduling al-
gorithm and energy aware scheduling algorithm. Aiming
at achieving the corresponding objectives, these scheduling
algorithms is consisted of traditional scheduling algorithm,
prediction-based scheduling algorithm, trust-based schedul-
ing algorithm and heuristic intelligence based scheduling
algorithm.

• Traditional Scheduling Algorithms [10], [11]: This
kind of algorithms include Min-Min, rotation, first
come first serve, etc. The principle of Min-Min al-
gorithm is to schedule tasks to the virtual machine
with the shortest expected execution time. Rotation
algorithm is to assign user tasks to the virtual ma-
chine of cloud data center in turn. The first come
first served algorithm is to allocate virtual machines
in turn according to the order of arrival.

• Prediction based scheduling algorithm [12], [13], [14]:
This kind of algorithm usually has a prediction mod-
el to predict the demand of the next task according
to the running condition of the historical task, so
it can create virtual machine in advance or reserve

resources to ensure that the task is scheduled to a
reasonable virtual machine.

• Trust-based scheduling algorithm [15], [16]. This
kind of algorithm introduces the basic concept of
trust in cloud computing, establishes the trust rela-
tionship between virtual machine and physical ma-
chine, and quantifies the impact of scheduling re-
sults on security and reliability under different trust
relationships by using trust benefit function, thus
guaranteeing the quality of scheduling algorithm.

• Heuristic intelligence based scheduling algorithm
[11], [17], [18]. The heuristic algorithm includes ge-
netic algorithm, ant colony algorithm, particle swarm
optimization algorithm, simulated annealing algo-
rithm and so forth. The heuristic algorithm has a
good global optimization search ability, and its ap-
plication to virtual machines scheduling can greatly
improve the quality of scheduling.

• Scheduling algorithms based on hybrid optimization
[19], [20]. Because hybrid optimization algorithm has
better optimization effect than single optimization
algorithm, some researchers use hybrid optimization
algorithm in virtual machines scheduling.

The above algorithms mainly consider a single scheduling
objective, and lack of comprehensive consideration of each
scheduling objective. To address this issue, some researcher-
s have proposed a multi-objective scheduling algorithm
for virtual machines, and also achieved the corresponding
results. Multi-objective based virtual machine scheduling
algorithms can be divided into two kinds, one is to use
the above algorithm to realize virtual machine scheduling
after processing multiple targets into one target, the other is
to establish a multi-objective optimization model for virtual
machine scheduling and use the existing multi-objective op-
timization algorithm to solve it. Different from the general
multi-objective optimization problem, this paper attempts
to use FCA for tackling this scheduling problem.

3 PRELIMINARIES

Aiming to understand the working process of VM schedul-
ing using FCA, the relevant preliminaries and notations
about FCA are provided in this section.

3.1 Formal Concept Analysis
Formal Concept Analysis (FCA) [21] as a powerful compu-
tational intelligence methodology for data analysis and rule
extraction from the formal context, is widely used in various
domains. It is used to characterize the relationships between
objects and attributes in a domain. First, a formal context
including this binary relationships between objects and at-
tributes is constructed. Further, the objects and attributes are
grouped into concepts, and then a formal concept lattice of
these concepts can be built up.

Definition 1. (Formal Context) A formal context is represented
as a 3-tupe K=(O,A, I), where O=(o1, o2, · · · , on) indicates a
set of objects, A=(a1, a2, · · · , am) refers to a set of attributes,
and I is the binary relation between O and A, and (o, a) ∈ I is
interpreted as “object o has the attribute a”. Usually, we remark
this binary relation between objects and attributes with “×”.
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Definition 2. (↑ and ↓ Operators) Given a formal context
K=(O,A, I), the ↑ and ↓ operators on X ⊆ O and B ⊆ A
are defined as,

X↑ = {a ∈ A|∀x ∈ X, (x, a) ∈ I} (1)

B↓ = {x ∈ O|∀a ∈ B, (x, a) ∈ I} (2)

The above both operations are the Galois correspon-
dence of the formal context (O,A, I). X↑ is called dual of A
and B↓ is called dual of O [22].

Definition 3. (Extent and Intent of Concept) A concept is
defined as a pair C=(X,B) if X↑=B and B↓=X . Here, X is
called the extent of concept; and B is called the intent of concept.

Definition 4. (Super-concept and Sub-concept) Given a for-
mal context K=(O,A, I), and two concepts C1=(X1, B1) and
C2=(X2, B2). The partial order C1 ≪ C2 indicates that concept
C2 is the super-concept of concept C1, and C1 is the sub-concept
of C2. Formally, the following inequations holds.

(X1, B1) ≪ (X2, B2) ⇔ X1 ⊆ X2(⇔ B1 ⊇ B2) (3)

Definition 5. [23](Concept Lattice) A concept lattice can be
organized and further built up with the all concepts in terms
of their partial order ≪, denoted as L(C,≪). Its graphical
representation is a Hasse diagram [21], [23] where each node
indicates a concept and each link between the concepts implies
a kind of partial order.

Example 1. For a given formal context K which contains 4
objects {o1, o2, o3, o4} and 5 attributes {a, b, c, d, e}. The binary
relations between objects and attributes are shown in Table 1.

TABLE 1
A Formal Context

O/A a b c d e
o1 × × × ×
o2 × × ×
o3 ×
o4 × × ×

By using concept lattice generation algorithm and lattice
visualization software Galicia 1, the corresponding concept lattice
is shown in Figure 1.

As can be seen from Figure 1, each node indicates a for-
mal concept including extent and intent, such as a concep-
t ({o1, o2, o4}, {a, b}), the extent is {o1, o2, o4} and inten-
t is {a, b}. It is interpreted as the objects {o1, o2, o4} own
the common attributes {a, b}. These formal concepts follow
the partial order within the concept lattice. Note that the
concept ({o1, o4}, {a, b, c}) is the sub-concept of the concept
({o1, o2, o4}, {a, b}), and the concepts ({o1, o2, o4}, {a, b, })
and ({o1, o3}, {e}) are the super-concepts of the concept
({o1}, {a, b, d, e}).

4 PROBLEM STATEMENT

In this section, the major challenges of conventional dis-
tributed tasks scheduling model are analyzed. Then, the
problem formulation on virtual machine scheduling in Mo-
bile Edge Computing environment is mathematically pro-
vided.

1. http://www.iro.umontreal.ca/∼galicia/

Fig. 1. The Concept Lattice of Formal Context K

4.1 Challenge
Differs with conventional distributed tasks scheduling mod-
el, MEC environment, as a large-scale distributed com-
puting paradigm, is facing some unique challenges. As
we known, the one-to-one mapping relation between task
and physical device could be established in the conven-
tional scheduling model. However, a complex task T is
usually partitioned into several sub-tasks, denoted as T =
{t1, t2, · · · , tn} which are mapped into multiple virtual ma-
chines (as shown in Figure 2). In particular, multiple virtual
machines can be placed in the same physical device. In other
words, the relation between the tasks and physical devices
in MEC are no longer a simple correspondence. With the
increasing scale of the problem, the difficulty of scheduling
is dramatically increasing [24].

A Complex Task

Task

VM VM VM VM VM VM

Device Device Device

Task Task

Fig. 2. Virtual Machines Scheduling in Mobile Edge Computing

4.2 Problem Formulation
In order to derive the problem addressed in this work, the
following relevant definitions are firstly presented. Further,
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the problem formally is stated.

Definition 6. (VM Scheduling) In Mobile Edge Computing
environment, VM scheduling is defined as a mapping between
tasks set T = {t1, t2, · · · , tn} and virtual machines set V =
{v1, v2, · · · , vm}. It is formulated as follows,

L|{lk} : T 7→ V (k = 1, 2, · · · , p) (4)

Since VM scheduling in this paper takes both computa-
tional capacity and energy into account, the corresponding
definition are as follows.

Definition 7. (Computational Capacity) We devise the pa-
rameter µ for evaluating the computational capacity, it is defined
as follows,

µ = α ∗ C ∗ P + β ∗M + η ∗B (5)

where C denotes the numbers of CPU, P refers to the processing
ability (MPIS), M (MB) indicates the memory capacity, and B is
the average network bandwidth; α, β, and η are the weights for
computational capacity, memory capacity and network bandwidth.
The configuration of this parameter can enable the VMs fit the
various demanding. For example, for a computation-intensive
model, we may empirically set α=40%, β=20%, η=40%; and,
we may set α=20%, β=50%, η=30% regarding to the resource-
intensive model.

Definition 8. (Energy) The energy evaluation for VMs is depen-
dent on the accurate energy model. We regard the CPU, memory,
and disk are the major components that consume most of the power
in MEC environment. Therefore, the energy model is represented
as,

E = ECPU + ERAM + EDisk (6)

where E represents the system total energy consumption; ECPU ,
ERAM and EDisk denote energy consumption on CPU, memory
and disk, respectively.

Problem 1. (VMs Scheduling in Mobile Edge Computing
Environment) Based on the above constraints, VMs scheduling
in MEC can be formulated as

f(µ,E) : T 7→ V (7)

The above problem can be interpreted as: the addressed
problem aims to find a best mapping from T to V under
the constraints of computational capacity µ and energy E.
Intuitively, a best mapping from T to V implies that we try
to find a optimized scheduling strategy which maximize the
computational capacity and minimize the energy consump-
tion.

5 FCA-BASED VMS SCHEDULING IN MEC

This section focuses on the proposed approach about VMs
scheduling in MEC based on FCA. First of all, a overall
framework of our proposed approach is provided. Then, the
detailed implementations for FCA-based VMs scheduling in
MEC are further elaborated.

VMs Context VMs Concept Lattice VMs Rules Set

Tasks Context
Tasks Concept 

Lattice
Tasks Rules Set

Fusion/Matching
L|{lk}

Fig. 3. The Overall Solution Framework

5.1 The Overall Solution Framework

Figure 3 shows the overall solution framework on FCA-
based VMs scheduling in MEC environment.

Clearly, we can see that the overall solution framework
is composed of three key modules:

• (FCA-based VMs Profile Characterization): This
module is in charge of characterizing the profiles of
VMs by using FCA methodology. The basic idea is
that (1) a formal context about VMs and its perfor-
mance metrics is constructed; (2) with the construct-
ed VMs context, the corresponding VMs concept lat-
tice is built up; (3) further, the VMs rules set derived
from VMs profile is obtained.

• (FCA-based Tasks Profile Characterization): Similar
with VMs profile characterization, another module is
to characterize the profiles of tasks by using FCA.
According to the users’ request for tasks, (1) we
may construct a formal context for tasks, called Tasks
Context; (2) then, the Tasks Concept Lattice could be
generated based on the tasks context; (3) finally, the
tasks rules set derived from Tasks profile is extracted.

• (Fusion/Matching): This module is used to infuse
the VMs rules and task rules for obtaining the best
matching (i.e., allocation scheme). Technically, the
similarity between formal concepts of tasks and
those of VMs are evaluated. According to the prin-
ciple of maximum similarity degree, the task rules
could be effectively infused with VMs rules. In other
words, the resulting mappings from VMs to tasks are
generated.

5.2 Implementations

This section focuses on the elaboration of implementations
for FCA-based VMs scheduling in MEC environment.

5.2.1 FCA-based VMs Profile Characterization
In order to characterize the VMs profile, a formal context
of VMs is initially constructed. Concretely, the different
VMs are regarded as the objects , and the number of CPU
C, processing capacity P , memory capacity M , bandwidth
B, and energy consumption grade E are regarded as the
attributes in the constructed formal context. Formally, the
formal context is represented as follows.

K = (V,A, I) (8)
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where V = {v1, v2, · · · , vm}, A = {C,P,M,B,E}, and I
denote the binary relations between VMs and attributes. I ⊆
V ⊗A, (v, a) ∈ I denotes that VM v has the attribute a, and
(v, a) /∈ I denote that VM v does not have the attribute a,
where v ∈ V , a ∈ A.

Remark 1. In many literature, if (v, a) ∈ I , then we mark it
with ×; otherwise, the blanks are given for (v, a) /∈ I .

According to Definition 1, the generic form of formal
context for VMs profile characterization is shown in Figure
4.

CPU(C) Processing 

Ability(P) 

Memory  

Capacity(M) 

Energy 

Consumption(E) 

Band

width 

  …    …    …    …  B 

 X X X X X 

 X X X X X 

… X 

 X X X X X 

Fig. 4. A Generic Form of Formal Context for VMs Profile

Clearly, v1 is a kind of VM which including the c2
number of CPUs, processing ability p2, M2 size of memory,
energy consumption grade E2 as well as bandwidth B.
Note that the bandwidth B is a constant parameter in MEC
environment.

Remark 2. If all VMs are with the same product model (we
called Isomorphic VMs), then they have the same processing
ability, i.e., pi. On the contrary, they have different processing
ability if these VMs are with the different product model (we called
Heterogeneous VMs).

In this paper, the experimental values for the above
main parameters can be obtained from the configurations.
However, the energy consumption evaluation cannot be
directed calculated. The following section will provide the
measurement of energy consumption.

5.2.2 Energy Consumption Evaluation

We devise and propose an energy consumption model from
the systematic point of view. A fundamental rule of an
energy consumption model that should be valuable at the
system level is that the model ought to be characterized by
easily accessible parameters. As we known, the CPU, mem-
ory and disk are the major components for consuming most
of the system’s energy. Formally, the energy consumption
model of VM can be evaluated as follows.

Esystem = ECPU + Ememory + Edisk (9)

where Esystem denotes the total energy consumption of the
VM system; ECPU , Ememory , and Edisk represent the ener-
gy consumption of CPU, memory and disk, respectively.

CPU Energy Consumption Model: One of the biggest
power dependants of a VM is CPU [25]. The processor’s
energy loss consists of a static and dynamic segment, with
the static segment being around steady and the dynamic
segment fluctuating with the action of the processor.

One main metric that has been regarded as a sensible
portrayal of dynamic action is CPU utilization. To avoid

complicated training, the energy consumption model can
be simplified into the following form:

ECPU = ECPUIdle
+ (ECPUmax − ECPUIdle

) ∗ U (10)

where ECPUIdle
and ECPUmax indicate the CPU idle and

maximum of processor power, which can be evaluated by
physical meter; U refers to the CPU utilization, which can
be calculated with cores of VMs/cores of physcial devices ×♯
channles.

Example 2. Considering a HP Proliant G5 VM characterised by
an idle and a maximum powers of 2248.8 and 3240 W respectively,
therefore the total energy consumed by a CPU utilization of 30%
can be easily calculated as:

ECPU = 2248.8+(3240−22248.8)∗30% = 2546.16W (11)

Memory Energy Consumption Model: In addition to
CPU energy consumption, memory energy consumption oc-
cupies the second largest place among the consumption on
the VMs. Extensive evidences show that the main memory
consumes about 30% of the total energy [26]. The memory
energy is mainly caused from memory processing and page
swapping. Usually, the memory energy consumption model
is composed of idle and active power. Formally, it is express
as follows.

Ememory = ERAMidle
+ ERAMactive (12)

where ERAMidle
and ERAMactive represent the idle power

and active power of memory, respectively. Equation (12)
is used in our energy consumption model due to the fact
that the memory is produced by different vendors and the
architecture and design might differ.

Disk Energy Consumption Model: Nowadays, Solid-
State Drive (SSD) as a mainstream data storage media used
in data centers VMs. SSDs have no moving mechanical
components. Disk is the subsystem that is hardest to model
correctly because of the difficulty arising due to the lack
of visibility into the power states of the disk drive and
the impact of disk hardware caches. SSDs comparatively
consume lesser power than Hard-Disk Drives (HDD). The
disk energy consumption model can be formulated as,

EDisk = EDiskidle
+ CrMread + CwMwrite (13)

where Mread and Mwrite are read and write speeds respec-
tively. Cr and Cw are constants. This model is known as the
throughput-disk based model.

Example 3. Given a set of heterogenous VMs V =
{v1, v2, · · · , v9}, i.e., their processing ability are differen-
t; the number of CPUs for those VMs C = {1, 2, 4};
the processing ability for V is denoted as P =
{200MHZ, 300MHZ, 400MHZ}; the memory for V is M =
{0.5G, 1G, 2G}; and the bandwith B=100M. According to the
above approach for VMs profile characterization based on FCA,
we thus construct the formal context of VMs as shown in Figure
5.

Further, the corresponding concept lattice (as shown in Figure
6) of the above formal context can be built up according to
Definition 5.

With Definition 2, for a set of VMs X
′
= {v3, v9}, their

common attributes are expressed as B
′
= {c2,M3}. Similarly,
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Fig. 5. Constructed Formal Context of VMs

Fig. 6. Concept Lattice of VMs

for a set of attributes B
′′
= {c2, p1}, the related VMs who own

these attributes are expressed as A
′′
= {v1, v3, v8}. In Figure 6,

each node indicates a concept, such as ({v5, v9}, {p2,M3, B}) is
a formal concept which can describe the features of VMs profile.

5.2.3 FCA-based Tasks Profile Characterization
To realize the precision scheduling of VMs, we need to
investigate the tasks profile which could be characterized
via users’ request. Figure 7 shows a skeleton frame about
user’s request on task execution in terms of personalized
demanding on the number of CPUs, processing ability,
memory capacity, energy consumption grade as well as
bandwidth.

Fig. 7. User’s Request on Task Execution

Generally, for different task, a user may has the different
request according to the requirements for task. That is to
say, if we take the tasks as the objects, the requirements as
the attributes, it is easily to construct the formal context of
tasks. Formally, the formal context can be represented as

K = (T,A,R) (14)

where T is a set of tasks, i.e., T = {t1, t2, · · · , tm}; A =
{C,P,M,B,E}, and R denote the binary relations between

tasks and users’ request for the tasks. R ⊆ T ⊗A, (t, a) ∈ R
denotes that user’s requirement for task t is a, and (t, a) /∈ R
denote that user has no requirements for task t on the aspect
of a, where t ∈ T , a ∈ A.

Example 4. On the basis of Example 2, we have a set of tasks
T = {t1, t2, · · · , t5}, and the user’s requirements are exactly
same with the attributes of VMs. Hence, similar with the process
of constructing the formal context of VMs in Example 2, the
constructed formal context of tasks is shown in Figure 8. Further,

�� �  �! "� "  "! #� #  #! $ %� %  %! 

&1 X X X X X 

&2 X X X X X 

&3 X X X X X 

&4 X X X X X 

&5 X X X X X 

Fig. 8. Constructed Formal Context of Tasks

the corresponding concept lattice (as shown in Figure 9) of the
above formal context can be built up according to Definition 5.

Fig. 9. Concept Lattice of Tasks

5.2.4 Fusion/Matching from Tasks to VMs
The above two sections have provided the construction pro-
cess for formal context of VMs and Tasks, however we need
to figure out the scheduling strategies by fusiong/matching
from tasks to VMs according to their generated formal
concepts which describe the users’ requirements for tasks
as well as VMs’ their own performance.

For the sake of fusion and matching from tasks and VMs,
the similarity degree between formal concepts of VMs and
Tasks is firstly defined.

Definition 9. (Similarity Degree between Formal Concepts
of VMs and Tasks) Let LV and LT be the concept lattices for
VMs and Tasks, respectively. For any given concepts (X,A) ∈
LV and (Y,B) ∈ LT , the similarity degree between (X,A) ∈
LV and (Y,B) ∈ LT is defined as,

sim((X,A), (Y,B)) =
|A ∩B|
|A ∪B|

(15)
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Clearly, we found that the more common elements of
intents A and B they have, the higher similarity is.

With the above similarity degree, for any given task ti,
the matching problem from a task to a virtual machine is
to return the expected virtual machine v̂j ∈ V according to
the principle of maximum similarity degree between formal
concepts of virtual machine and task. It is formulated as
follows.

v̂j := argmax
1≤j≤n

sim((t↑↓i , t↑i ), (v
↑↓
j , v↑j )). (16)

Eq. (16) indicates that the task ti should be assigned onto
virtual machine v̂j .

Example 5. Let us continue the Example 2 and Example 3,
the similarity degree between VMs and tasks are easily obtained
according to Eq. (15). The results are shown in Table 2.

TABLE 2
Similarity degree between VMs and Tasks

VM \ Task t1 t2 t3 t4 t5
v1 1 1

9
4
6

3
7

1
9

v2
2
8

4
6

2
8

1
9

3
7

v3
4
6

1
9

1 2
8

2
8

v4
3
7

1
9

2
8

1 2
8

v5
1
9

3
7

2
8

2
8

1
v6

1
9

3
7

1
9

2
8

1
9

v7
3
7

3
8

2
8

2
8

2
8

v8
3
7

2
8

3
7

3
7

2
8

v9
2
8

2
8

3
7

3
7

4
6

v10
1
9

4
6

1
9

2
8

2
8

Obviously, we can get the following allocation rules,

• t1 should be assigned onto virtual machine v1 since the
largest similarity degree sim((t↑↓1 , t↑1), (v

↑↓
1 , v↑1))=1;

• t2 should be assigned onto virtual machine v2 or v10 since
the largest similarity degrees sim((t↑↓2 , t↑2), (v

↑↓
2 , v↑2)) =

4
6 , and sim((t↑↓2 , t↑2), (v

↑↓
10 , v

↑
10)) =

4
6 ;

• t3 should be assigned onto virtual machine v3 since the
largest similarity degree sim((t↑↓3 , t↑3), (v

↑↓
3 , v↑3))=1;

• t4 should be assigned onto virtual machine v4 since the
largest similarity degree sim((t↑↓4 , t↑4), (v

↑↓
4 , v↑4))=1;

• t5 should be assigned onto virtual machine v5 since the
largest similarity degree sim((t↑↓5 , t↑5), (v

↑↓
5 , v↑5))=1;

6 EVALUATION

In this section, we firstly present the details about collection
of dataset; then, the evaluation results and analysis are
provided.

6.1 Dataset
The experimental dataset about VMs are collected from
our own cloud platform which consists of software and
hardware modules.

• Software Module: Our platform adopts the virtual-
ized system InCloud Sphere developed by Inspur
Corporation 2 (a leading provider company on cloud
computing and big data services).

2. http://en.inspur.com/

• Hardware Module: The hardware is composed of 3
NF8460M4 servers (physical devices). Through a se-
ries of self-controllable core technologies, the platfor-
m abstracts physical server resources and transforms
physical resources such as CPU, memory, network,
storage, and I/O into logical resources that can be
managed, scheduled, and distributed. In addition,
this platform could achieve the high resource u-
tilization, flexible and dynamic resource allocation
requirements, and faster business response speed.

As mentioned before, VMs energy consumption are
mainly dependent on CPU, memory and disk. The relevant
experimental parameters are given as follows.

1) (Parameters for CPU) Table 3 shows the relevant
parameters for CPUs.

TABLE 3
Configuration of CPUs

CPU Type ECPUidel
ECPUmax Processing Ability

Xeon E7-4830v3 45W 115W 2.13G Hz
Xeon E3-1220v5 31W 80W 3.0G Hz

(Remark: Xeon E7-4830v3 has 12 Cores & double channel memory;
and Xeon E3-1220v5 has 4 Cores & single channel memory

2) (Parameters for Memories) Table 4 shows the ven-
dors for 4GB capacities [28]. Micron, as one of the
leading manufacturers of server memories, is con-
sidered as our benchmark for the prediction of the
memory power.

TABLE 4
Energy Consumption Parameters by Vendor for 4GB capacity

Vendor ERAMactive
ERAMidle

Micron 9.3 2.6

3) (Parameters for Disk) We generated random VMs
according the VMs configuration given in Table 5.

Disk(GB) Read/Write(Mbps)
50 34.5
100 69.5
150 103.2
250 172.5

TABLE 5
Parameters for Disk

Based on the above configurations, we create 20 virtual
machines including 14 type-E7 VMs and 6 type-E3 VMs. The
energy consumption for type-E7 VMs and type-E3 VMs are
presented in Table 6 and Table 7, respectively.

To simplify the representation of energy consumption in
the constructed formal context, we adopt the coarse gran-
ularity representation for dividing the energy consumption
into 5 levels (In this paper, we emprically set the following
5 levels: ≤66, [67,76], [77,96],[97,126], ≥127). Besides, the
bandwidth is taken into account as well. Consequently, the
formal context of VMs (as shown in Figure 10) is constructed
as follows.

Apparently, this formal context includes 20 VMs and
20 essential attributes. According to the FCA approach, the
corresponding concept lattice can be generated as follows.
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TABLE 6
Energy Consumption with Type-E7 VM

VM ID CPU Memory Disk Total Energy
1 1 1 50 65.6106
2 1 2 100 65.8073
3 1 4 150 65.9967
4 2 2 50 68.5272
5 2 4 150 68.9133
6 4 4 100 74.5573
7 4 8 150 86.6467
8 4 16 250 87.0361
9 6 4 100 80.3906
10 6 8 150 92.48
11 8 8 100 98.1239
12 8 16 250 122.503
13 16 16 150 145.447
14 16 32 250 193.436

TABLE 7
Energy Consumption with Type-E3 VM

VM ID CPU Memory Disk Total Energy
1 1 1 50 60.9439
2 2 2 50 73.1939
3 4 4 100 97.8906
4 4 16 250 110.369
5 6 8 150 165.48
6 8 16 250 214.169

In MEC environment, a task T = {t1, t2, t3} is given.
When a user send a request to MEC, i.e., a request could
be characterized with both sub-tasks and corresponding
attributes. Let us assume that the tasks profile (T,A) as
the formal context (shown in Figure 12). The corresponding
concept lattice can be generated as follows.

6.2 Experimental Results
In order to achieve the best tasks allocation/VMs schedul-
ing, the following similarity between formal concepts of
VMs and tasks are provided in Table 8. Similarly, the tasks
allocation rules are obtained as follows:

• t1 should be assigned onto virtual machine
v1, v8, v10, v11, v12, v16, v17 since the similarity de-
gree between t1 and those VMs are 3

7 which is the
largest one (as shown in Column 1 of Table 8).

• t2 should be assigned onto virtual machine
v2, v9, v13, v14, v15, since the similarity degree be-
tween t2 and those VMs are 3

7 which is the largest
one (as shown in Column 2 of Table 8).

• t3 should be assigned onto virtual machine
v3, v5, v16, v17, v19, v20, since the similarity degree be-
tween t3 and those VMs are 3

7 which is the largest
one (as shown in Column 3 of Table 8).

In addition, we also compare the VMs scheduling ap-
proaches with/without consideration of energy consump-
tion in MEC. Toward to this, the energy consumption is act-
ed as the performance evaluation metric for two comparison
approaches. To realize the normalization comparison, the
following weighted average energy consumption (WAE) is
defined.

Definition 10. (Weighted Average Energy Consumption)
Suppose tasks t1, t2, · · · , tm are assigned to VMs v1, v2, · · · , vm,

Fig. 10. Constructed Formal Context of VMs Dataset

Fig. 11. Concept Lattice of VMs Dataset

respectively, and their corresponding energy consumption are
denoted as e1, e2, · · · , em, the weighted average energy consump-
tion (WAE) can be represented as

WAE =
n∑

i=1

sim((t↑↓i , t↑i ), (v
↑↓
i , v↑i ))ei (17)

Figure 14 shows the performance comparison for VMs
scheduling approaches with/without consideration of ener-
gy consumption in MEC environment. Clearly, the proposed
approach in this paper can significantly reduce the ener-
gy consumption around 28% comparing to the approach
without consideration of energy consumption. Hence, it is
proved that the proposed approach is a green and sustain-
able scheduling strategy for VMs scheduling in MEC.

7 CONCLUSIONS

Aiming to address the problem of VMs scheduling in MEC,
this paper firstly established a scheduling model which can
be represented with a mapping from VMs to tasks. Due to
the excellent features of describing the relations between
objects and attributes in FCA, this paper thus constructed
the formal contexts of VMs profile as well as tasks descrip-
tions. In order to achieve the process of infusion/matching
from VMs to tasks, a similarity measurement between the
formal concepts that are generated from the formal context
of VMs and tasks, is formally defined. Therefore, the VMs
scheduling is regarded as an optimization problem which
is to return the appropriate mapping from VMs to tasks
in terms of maximum similarity between their concepts.
The extensive simulations on real dataset are conducted
for demonstrating the feasibility and effectiveness of our
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Fig. 12. Constructed Formal Context of User’s Request

Fig. 13. Concept Lattice of User’s Request

approach. It is believed that our approach, a novel kind
of VMs scheduling mechanisms for MEC, can be applied
into other relevant applications, such as tasks allocation
for crowdsourcing, VMs scheduling in data centers and so
forth.
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